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FOREWORD

This document is based on the results of numerous analyses, trade studies,

and other investigations and conceptual.design activities resulting in the

definition of an autonomous Sortie Lab. These activities were conducted

by the MSFC S&E laboratories; each contributed to this document within

its area of responsibility. Requests for details of individual areas of

study should be addressed to:

Sortie Lab Manager
Program Development

George C. Marshall Space Flight Center
Marshall Space Flight Center, Alabama 35812
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1.0 INTRODUCTION

1. 1 Objective

The objectives of the Sortie Lab technical summary are as

follows:

a. Summarize the design and operational requirements

which have evolved from the Sortie Lab analysis and

trade studies performed to date.

b. Support the preparation of future Sortie Lab technical

studies.

c. Define the S&E autonomous Sortie Lab, its subsystems,

configuration, capabilities and operational character-

istics.

This technical summary will also provide a source of requirements for

systems and experiment support for the Sortie Lab baseline as previous-

ly defined.

1.2 Scope

Basic design data required by the designers and planners of

the S&E autonomous Sortie Lab structures, subsystems, components

and instrumentation are presented in this document.

Specific areas covered are configuration definition, mission

analysis, operations analysis, experiment integration, safety, and

logistics.

The technical summary outlines characteristics which re-

flect the influence of the growth in Sortie Lab capability and the results

of the mission and operational analysis.

Each of the selected areas is described in terms of objectives,

equipment, operational concept, and support requirements.
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1.3 Background

In order to effectively design and operate a multidisciplinary

spacecraft such as the Sortie Lab, it is necessary to collect and evalu-

ate the trade studies, design analysis and capabilities at periodic points

in the design and development cycle. This technical summary document

was written to accomplish this task.

Input for the Sortie Lab technical summary was solicited

from the following laboratories within the MSFC Science and Engineer-

ing Directorate: Systems/Products, Astrionics, Astronautics, and

Aero -Astrodynamics.

The design, operational, programmatic requirements and

configuration definition were developed in accordance with the Level I

Sortie Lab Guidelines and Constraints dated August 15, 1972.
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2. 0 PROGRAM DEFINITION

2. 1 Level I Guidelines

SORTIE LAB GUIDELINES AND CONSTRAINTS LEVEL I,

dated August 15, 1972, Revision No. I lists current guidelines. A brief
summary of those guidelines that dictate configuration features necessary

to achieve baseline objectives follows.

2. 1. 1 Design Mission

Sortie Lab will be designed for three classes of missions:

I. Experiment Missions supporting both multidiscipline

and single discipline research and applications. The baseline duration

of experiment missions will be 7 days. Extended duration of experi-

ment missions will be up to 30 days. Polar orbit capability will be

provided.

II. Servicing Missions providing on-orbit maintenance and

equipment change-over support to automated, man-tended, free-flying

spacecraft.

III. Development Missions in support of Shuttle/Sortie Lab

development and of the determination of payload environments. The

development missions are to be considered secondary design drivers.

2. 1.2 Design Life

The Sortie Lab will be designed for an operational life of at
least 50 missions of 7 days duration with ground refurbishment.

2. 1. 3 Mission Success

The Sortie Lab will be designed for a high probability (. 95)
of mission success. Mission success will be measured by proper
functioning of the module, its systems and subsystems, and experi-
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ment support equipment provided to the user. This level of mission

success will be assured by component and subsystem reliability, re-

dundancy and on-board maintenance as appropriate. Mission success

does not require successful completion of all experiments.

The Sortie Lab subsystems designs will be based on at least

a fail safe concept except for the structure which will be based on a

safe life concept. Subsystem redundancy will only be used to achieve

mission success and fail safe design goals or to reduce cost.

2. 1.4 Crew Size

For design of the Sortie Lab, the following numbers of per-

sonnel shall be considered:

Total in Orbit Payload Dedicated

Baseline 6 4

Maximum 8 6

Minimum 4 2

The Shuttle Orbiter will provide sleep, galley, waste manage-

ment and personal hygiene accommodations. The weight of all payload

dedicated personnel in excess of two including the weight of their seats,

equipment and provisions will be chargeable to Sortie Lab.

Note that these numbers assume that "payload dedicated"

personnel will spend most of their work time on experiments. experi-

ment support equipment and Sortie Lab subsystems. If shuttle opera-

tions on orbit require more than two crewmen for most of their work

time, the corresponding numbers for "total in orbit" will increase

and weight attributable to the larger crew will be chargeable to Sortie

Lab.

Z. 1. 5 Weight

The total weight of the Sortie Lab, the pallet when used, the

experimental apparatus, expendables and other necessary devices

chargeable to Shuttle payload, all with suitable design weight margins,

shall not exceed 80 percent of the Shuttle nominal performance for the

particular mission of interest.
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2. 1. 6 Autonomy (Level of Shuttle Support)

The Sortie Lab will make efficient use of Shuttle-provided

utility support (i.e. power, communications, environmental control,

etc. ) consistent with a simple module to orbiter interface and with

minimum mutual interference during turn-around activities.

2. 1.7 Inte ri'ace

The baseline Shuttle to payload interfaces will be defined

by the following documents:

a. Space Shuttle Program Requirements Document

Level I dated April 21, 1972, Revision No. 4

b. Space Shuttle Baseline Accommodations for Pay-

loads MSC-06900 dated June 27, 1972.

A standardized interface concept will be jointly developed with the

Shuttle program.

2. 1. 8 User Provisions

Laboratory utility to the users will be a major consideration

in all design and operational concept decisions.

2. 1.9 Experiments

Experiment requirements as determined by the special study

workshop activities established to define sortie missions shall be a

major input and source of design trade studies.

2. 1. 10 Safety

A system safety plan shall be developed in accordance with

NASA Safety Program Directive No. 1 (Rev. A) dated December 12.

1969, and other applicable directives (TBD). Compatibility with appli-

cable shuttle safety directives is required.

No credible hazard associated with the Sortie Lab or its

experiment activities shall prevent safe termination of a mission.
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The Sortie Lab shall have self-contained protective devices

or provisions against all credible hazards generated by its support

functions or experiment activities.

EVA (Extra Vehicular Activity) will be minimized in all

equipment operations.

2. 1. 11 Resources

The cost impact will be a major consideration in all major

design and operational concept decisions.

2. 2 Derived Requirements

The fundamental systems-level requirements derived from

the tasks performed during the first part of the Sortie Lab Phase B

Study are listed below. Most of these requirements are included in

the Sortie Lab Design Requirements Document (SLDRD) dated Decem-

ber 1, 1972.

2. 2. 1 Operations

General operations requirements are:

a. The Sortie Lab shall be designed to avoid contamination

of the outside spacecraft environment by minimizing overboard dumping

of waste products during on-orbit experiment operations.

b. Sortie Lab experiment-related crew activities shall not

be required during ascent, reentry or landing operations.

c. The Sortie Lab will be designed for multi-shift opera-

tion, with staggered crewman activity times permissible as experiment

programs dictate.

d. The Sortie Lab nominal crew duty cycle is 24 hours of

which 12 hours are a minimum required for off-duty time; e.g., eat,

sleep, personal hygiene, exercise and housekeeping. The remaining

12 hours per crewman per day is allocated to service/experiment work,
supporting subsystems and performing other work functions.
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Sortie Lab operations-related guidelines and constraints are

discussed in Section 5. 0.

2. 2. 2 Systems/Subsystems

Some of the basic systems/subsystem design requirements

generated during the Phase B study are presented in this section.

2. 2. 2. 1 General

a. The Sortie Lab shall be designed for land, sea and air

transportation.

b. No orientation restrictions will be imposed by subsystems.

c. The Sortie Lab shall provide the capability for four

payload specialists to work in the Sortie Lab at one time and for two

shifts of three men each for a 7-day mission.

d. Sortie Lab hardware which the crew may come in contact

with while in the shirtsleeve environment shall be designed so that sur-

face temperature will not exceed +1050F (maximum). Equipment sur-

face temperatures below +60 0 F should be avoided to prevent atmospheric

moisture from condensing on its surface.

e. Mobility and stability aids (handholds, handrails, and

foot restraints) shall be provided as required to aid the crewmen.

f. Fuel cell byproduct water shall have a cleanliness level

that is acceptable for crew drinking requirements.

2. 2. 2. 2 Structural

The Sortie Lab structural system shall be designed to with-

stand simultaneously the critical mission loads and any associated

environmental loads without experiencing detrimental deformation

using yield safety factors or catastrophic failure using ultimate safety

factors. The effects of repeated loads, acoustic and vibration spec-

trums, repeated pressure cycles and the duration of these type loads

shall be considered in the design of all Sortie Lab structure.
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a. Design Yield Load: At design yield load there shall be

no yielding or deformation of the structure which would result in im-

pairment of any of the functional requirements of the Sortie Lab struc-

tural system.

b. Design Ultimate Load: At design ultimate load there

shall be no failure or instability of any major assembly, subassembly

or component of the Sortie Lab structural system.

c. The following factors of safety shall be used for the

design and analysis of all Sortie Lab structure.

* General:

Yield Factor of Safety = 2. 0
Ultimate Factor of Safety = 3. 0

If the primary structure is designed to an ultimate

factor of safety less than 3. 0, it shall be structurally qualification

tested.

* Pressurized Structure:

Personnel Compartments, Internal Pressure Only:

Proof Pressure = 1.5 x limit pressure
Yield Pressure = 1.65 x limit pressure
Ultimate Pressure = 2.0 x limit pressure

Windows, Doors, Hatches, etc., Internal Pressure
Only:

Proof Pressure = 2. 0 x limit pressure
Ultimate Pressure = 3.0 x limit pressure

Hydraulic and Pneumatic Systems, including
reservoirs:

Lines and Fittings, less than 1.5 in. diameter

Proof Pressure = 2. 0 x limit pressure
Ultimate Pressure = 4. 0 x limit pressure

Lines and Fittings, 1.5 in. diameter or greater

Proof Pressure = 1.2 x limit pressure
Ultimate Pressure = 1. 5 x limit pressure

Hydraulic and Pneumatic Tanks and High Pressure
Vessels
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Proof Pressure 1. 5 x limit pressure
Ultimate Pressure = 2. 0 x limit pressure

Actuating Cylinders, Valves, Filters. Switches

Proof Pressure = 1. 5 x limit pressure
Ultimate Pressure = 2. 0 x limit pressure

* Temperature: A factor of safety of 1. 0 shall be

applied to all temperature induced loads.

* Malfunction: A factor of safety of 1. 0 shall be

applied to all load conditions resulting from malfunction or crash.

* Astronaut Tethers and Attachments: The following

factors of safety shall be applied to the design and analysis of astronaut

mobility aids:

Yield Factor of Safety = 2. O0
Ultimate Factor of Safety = 3. 0

2. 2. 2. 3 Mechanical

a. Hatches between pressurizable compartments, including

airlocks, shall: allow rapid ingress/egress, be operable from either

side, provide positive indication of closure, and be provided with a

pressure equalizing valve.

b. The Sortie Lab structure and subsystems will be design-

ed to accommodate an operating pressure 14. 7 psia in the habitable

areas. The structure of the pressurized Sortie Lab shall be designed

for a positive pressure only for all mission phases.

c. Mechanical and structural interfaces will be designed

for rapid mate, alignment and disconnect.

d. Mating surfaces and seals requiring pressure integrity

confirmation shall be designed to eliminate the necessity of vacuum

tests of the Sortie Lab.

2. 2.2.4 Environmental Control

a. The atmospheric pressure of the Sortie Lab shall be
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14.7 psia using a two-gas system composed of nitrogen and oxygen.

b. The nominal cabin environment shall be maintained at

a cleanliness level of Class 100, 000.

c. The atmosphere supply and control system shall be de-

signed to maintain a positive pressure in the Sortie Lab habitable area

with respect to the payload bay area during flight operations.

d. Temperature controls shall be installed in the Sortie Lab

to provide independent control from the Shuttle Orbiter.

e. Temperature and humidity levels shall be controlled auto-

matically, with manual adjustment capability provided.

f. The ECS shall be able to maintain an acceptable environ-

ment in the Sortie Lab under the most adverse conditions of crew load-

ing, experiment loading, payload deployment, altitude, orbital plane

inclination to equator, and spacecraft attitude with respect to the earth

and the sun.

g. Local and remote control and shutdown capability shall

be provided for the ECS.

h. Means shall be provided to verify the life support suit-

ability of environmentally isolated spaces prior to entry.

i. Active control shall be required for those contaminants

which may exceed maximum allowable concentrations during a particular

mission. In assessing the concentration levels for control, requirements

the cabin leakage must be assumed zero.

j. The Sortie Lab method of heat rejection shall not con-

strain the use of standard laboratory equipment for experiments.

k. The Sortie Lab shall provide the necessary interfaces

for maintaining the Sortie Lab/experiments environmental requirements

after installation into the Orbiter.

2.2. 2.5 Electrical Power

a. The Sortie Lab power system shall be capable of accept-
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ing an average and peak power load based on the capability of one Shuttle-

type fuel cell.

b. An interior Sortie Lab lighting system shall be provided

to allow for crew equipment installations, normal and emergency crew

activities, and experiment operations.

2. 2. 2. 6 Communications

a. The capability for continuous voice communications be -

tween the Sortie Lab and the Shuttle Orbiter shall be provided.

b. All communications to the ground will be through the

Orbiter systems.

c. An emergency communications system independent of

the normal intercom system shall be provided from the Sortie Lab to

the Orbiter.

2.2. 2.7 Data Management

a. The Sortie Lab primary data mode shall be for onboard

data recording of scientific data.

b. All Sortie Lab systems shall be provided with adequate

deactivation and monitoring capability to verify that deactivation is

sufficient to prevent personal injury or equipment damage during

maintenance activities.

c. Onboard checkout shall be utilized to perform malfunction

detection and conduct subsystem and payload equipment checkout, moni-

toring, and fault isolation to a level optimized for cost, safety, main-

tenance, and repair requirements.

d. Automated critical control functions shall provide for

crew initiated override/interrupt capability.

e. It shall be possible to verify operation of all critical

redundant components while they are connected in-place.

f. Built in test points will be provided for interface verifi-

cation and trouble shooting.
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2.2. 3 Load s

Design load requirements for the Sortie Lab structural system

are presented in the following subsections. All loads presented are limit

values unless otherwise specified and shall be used with the appropriate

safety factors.

a. The following load factors are appropriate for all handling,

erection and transportation operations.

Limit Load Factors (g)
Category Longitudinal Lateral Vertical

Handling and Erection +0. 5 +0. 5 +2. 0

Air Transport +3.0 +1.0 +3.0

Water Transport +1.0 +1.5 +3. 0

Land Transport +1.0 +1.5 +3.0

b. The Sortie Lab shall be designed to meet all the loads

resulting from prelaunch, launch, boost, reentry, flyback and landing.

The Sortie Lab structural system shall be designed to withstand all

loads resulting from the static and dynamic acceleration factors pre-

sented in Table 2.2-1.

c. The Sortie Lab structure shall be designed to the follow-

ing crash load factors:

Load Factors (g's) Direction

Longitudinal 9. 0 Forward
1. 5 Aft

Lateral 1.5

Vertical 4.5 Down
2.0 Up

These factors are containment factors and no additional dynamic or

safety factors should be applied to them. Under these loads the Sortie

Lab must be restrained in the payload bay so as to not constitute a

hazard to the Orbiter personnel during a crash. The factors defined

above should be considered independent and not occurring simulta-

neously.
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Longitudinal Lateral

Mission Phase Steady Dynamic(G Steady Dynamic (G) **Total Accelerations (G)
(G) 0-60 Hz (G) 0-60 Hz

x x y z y z max Xmin Ymax Ymin Zmax Zmin
Thrust Buildup Emergency -1.0 +0.5 0 0 +0.3 +0.3 -0.5 -1.5 +0.3 -0.3 +0.3 -0.3Rebound - -

Launch Release -1.5 +1.9 <O.* <0.1* +0.7 +2.9 +0.4 -3.4 +0.8 -0.8 +3.0 -3.0
Max Q Flight Region -2.0 +0.3 0.6* 0.8* +0.3 +0.3 -1.7 -2.3 +0.9 -0.9 +1.1 -1.1
Max Vehicle Acceleration -3.0 +0.3 0.3* 0.4* +0.2 +0.2 -2.7 -3.3 +0.5 -0.5 +0.6 -0.6During SRM Burn - -

SRM Cutoff/Separation -1.0 +3.0 0.1* 0.3* +0.3 +0.5 +2.0 -4.0 +0.4 -0.4 +0.8 -0.8
Max Accel - Orbiter Only Boost -3.0 +0.3 0.1* -0.6 +0.2 +0.2 -2.7 -3.3 +0.3 -0.3 -0.4 -0.8
Orbiter Cutoff/Separation <-0.1 +2.0 <0.1* +0.2 +0.3 +0.4 +1.9 -2.1 +0.4 -0.4 +0.6 -0.2
Reentry +1.0 +0.4 0.4* +3.0 +0.3 +1.0 +1.4 +0.6 +0.7 -0.7 +4.0 +2.0
Flyback 0.3* +0.3 0.2* +1.0 +0.1 +0.4 +0.6 -0.6 +0.3 -0.3 +1.4 +0.6
Landing/Taxiing/Braking +1.0 +0.3 <0.1* +2.0 +0.2 +1.0 +1.3 +0.7 +0.3 -0.3 +3.0 +1.0
Payload Deployment <0.1* <+0.1 <0.1* <0.1* +0.1 +0.1 +0.2 -0.2 +0.2 -0.2 +0.2 -0.2

* Steady State Accelerations Which May Act In Either A Positive Or Negative Direction From Flight To Flight.

** Design Load Factors (Payload C.G.) Payload Design Should Be Based Upon Any Combination Of x,y, and z Accelerations For Each Mission Phase.

TABLE 2.2-1. ,A YLOAD ACCELERATION FACTORS



2. 2.4 Physical

The Level I Guidelines dictated the Sortie Lab's weight limita-

tions based on the Shuttle Orbiter's performance capability (reference

Section 2. 1.5). Weight and configuration requirements established

early in the Phase B study are:

a. Based on the maximum weight of the Sortie Lab, pallet,

experiment integration equipment, experiment hardware, payload

chargeable payload specialists and their equipment will not exceed

32, 000 pounds.

b. The Sortie Lab design shall accommodate a payload of

12, 000 pounds which includes experiment integration equipment, experi-

ment hardware, payload chargeable payload specialists and their equip-

ment. Both the pallet and the pressurized module shall be independently

capable of accommodating the 12, 000 pound payload, or any combination

up to the 12, 000 pound payload.

c. The maximum external diameter of the module and pallet

shall be 14 feet. Mechanisms that are external but attached to the

module, such as handling rings, attachments for deployment, docking

mechanisms, etc., shall be contained, at launch within an envelope of

15 feet diameter.

d. The Sortie Lab shall provide for viewing of pallet mount-

ed and externally extended experiments.

e. The Sortie Lab interior shall be designed for a normal

orientation in a horizontal position during maintenance, refurbishment

and checkout activities.

f. A clear access opening close to the module diameter

shall be provided for ground servicing and payload installation.

g. The pallet shall be in direct viewable area of the pressur-

ized module.

h. The Sortie Lab to tunnel hatch and tunnel to Orbiter hatch

shall have windows for viewing from one area to the other.
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i. Any support module shall mate with any experiment

mod ule.

2.2.5 Safety

Safety of operations throughout the Sortie Lab project shall

be an overriding consideration where alternatives of design choice occur.

Two safety-related requirements stemming from the design

of a deployable radiator for the MSFC Phase B Sortie Lab configuration

are:

a. Instrumentation and interlocks shall be provided to insure

the Orbiter payload bay doors are open prior to initiation of radiator

deployment and verification that full deployment has occurred, and the

Sortie Lab radiator is locked in place.

b. Instrumentation and interlocks shall be provided to insure

the Sortie Lab radiator has been retracted and locked in place before

closure of the payload bay doors.

Safety related criteria, requirements and provisions are

discussed in Section 7. 0.

2. 2.6 Maintainability

Basic maintainability requirements are:

a. The Sortie Lab shall have no scheduled inflight maintenance

performed during the 7-day mission. Unscheduled inflight maintenance

of the Sortie Lab shall be limited to minor adjustments and replacement.

b. Sortie Lab subsystems containing limited life components

and those requiring inspection, replacement, servicing, calibration or

adjustment shall be easily accessible and removable. Preferential

access shall be provided for scheduled replacement and higher risk

items.

c. Items having the same functional and performance re-

quirements shall be designed to be interchangeable wherever practicable.
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2. 2.7 Maintenance

Basic maintenance requirements are:

a. Special tools shall be kept to a minimum and commonality

in tool requirements shall be implemented.

b. Spares shall be stowed in a manner that allows access to

each item in any desired sequence.

c. Spares shall be fully qualified and completely serviceable

without testing prior to installation.

d. Primary maintenance of the Sortie Lab shall be accom-

plished on the ground while demated from the Shuttle Orbiter. Mainte-

nance of system installed equipment shall normally be limited to "remove

and replace. "

e. The Sortie Lab will be designed to minimize activities

between sequential flights. Periodic overhauls will be performed to

restore the desired systems confidence.

2. 2. 8 Payload Integration

Derived payload integration requirements are:

a. Modification and space qualification testing of standard

laboratory equipment shall be minimized,

b. The Sortie Lab will have the capability of accommodating

commercial hardware in the experimental equipment with minimum

modifications.

c. A standardized mechanical, electrical, data bus, and

fluid interface between the Sortie Lab and the payload/experiment shall

be developed.

d. Experiment mounting provisions, hole spacing, and sub-

system interfaces shall be standardized for the Sortie Lab design.

e. Protection for payload instruments and equipment sensi-

tive to contamination shall be provided.
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2. 2.9 Materials

A control document entitled, "Materials Requirements for

Sortie Lab (Spacelab)", dated August 31, 1973, has been published to

specify the design requirements for Sortie Lab materials.

This document was developed to specifically state the safety

and operational. requirements that materials must meet to qualify for

Sortie Lab applications. This approach of expressing straight forward

requirements rather than referring to numerous and voluminous docu-

ments (as normally done by Government contracts) should minimize the
need for materials lists and the numerous Military, Federal, and NASA
documents that are usually provided. Referenced documents are in-
cluded in this document primarily for information purposes.

Basic subjects covered are (1) flammability, Oxygen compati-

bility, odor, and offgassing; (2) shatterable and flaking materials; (3)

fungus control: (4) cadmium plating; (5) beryllium; (6) titanium; (7)

mercury and polyvinyl chloride; (8) electrical circuitry material con-

trols; (9) radioactive materials; (10) elastomeric and natural nubber;

(11) potting and molding compounds; (12) adhesive bonding; (13) lubri-

cants; (14) ethylene glycol; (15) corrosion resistance, hydrogen em-

brittlement, dissimilar metal and stress corrosion; (16) carcinogens;

and (17) hazardous materials.

2. 2.10 Contamination Control

Preliminary Sortie Lab contamination control requirements

have been prepared to define, interpret and expand the broad require-

ments contained in Sortie Lab program documentation. These require-

ments were developed from existing programs contamination control

requirements and are consistent with Space Shuttle requirements.

These requirements address contamination control of the
Sortie Lab and define specific cleanliness levels, allowable contaminant
levels and contamination control desigrn and operational constraints.

Although contamination may include the presence of any foreign matter
or unwanted energy, this specification only addresses contamination in
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the form of particulate matter, surface films, and gaseous or liquid

adulterants which may be detrimental to mission life, technological

operations, scientific observations or personnel safety.

Specific requirements are summarized below:

a. Design, manufacturing, handling and operational concepts

shall minimize the probability of contamination of critical surfaces,

elements and environments or permit convenient and practical, periodic

cleaning or replacement.

b. All surfaces shall be cleaned to general conformance to

paragraph 5. 1.3 of MIL-SPEC-1246 (Level 100A). After cleaning, veri-

fication of surface cleanliness shall be performed by visible plus ultra-

violet inspection methods in lieu of the detailed measurements specified

in MIL-SPEC-1246.

c. Subsequent to surface cleaning specified above, the Sortie

Lab, subsystems, components, and experiment packages shall be main-

tained in a Class 100, 000 clean room environment as specified in FED-

STD-209 with certain additions which are defined.

d. The manned payload carriers shall maintain active con-

trol of the following habitable volume environmental limits. The CO2

level shall not exceed 7.6 mm Hg at any time during normal operation.

The nominal level shall be - 3. 0 mm Hg. Odors and toxic gases shall be

limited, evaluated and approved based on materials selection and tests

specified in NHB 8060. 1, paragraph 206.

e. All materials and finishes shall be selected for a mini-

mum outgassing, dusting, powdering, or flaking characteristics or

acceptable covers, coatings, or air filters shall be used to contain

dusting products. Specific requirements are given for the habitable

volume and for external surfaces.

f. All explosively actuated devices shall retain the com-

bustion products in a sealed enclosure. Contamination-sensitive com-

ponents shall be provided with covers or shields wherever possible.

There shall be no venting internally in the Sortie Lab or in the Shuttle

payload bay. Any required or proposed venting shall be submitted to
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the Project Office for definition in the appropriate interface control

documents. Experiment/equipment hardware shall be so designed and

constructed as to eliminate or contribute minimum degradation to the

Sortie Lab environment.

g. In addition to maintaining the Class 100, 000 environ-

ment, the interior of the Sortie Lab shall be purged with dry air con-

forming to MSFC-PROC-404.

h. Contamination-sensitive instruments and experiments

provided with covers shall not be exposed to the space environment

until 6 hours after the Shuttle Payload Bay doors are opened. Opera-

tions shall preclude reaction control thruster firings and controlled

venting during periods of operation of contamination-sensitive instru-

ments and experiments. Under emergency conditions, the operational

CO 2 level specified above may be exceeded up to a maximum concentra-

tion of 15 mm Hg with a maximum exposure duration of 2 hours.

2.3 Payloads

The following sections present the representative experiment

payloads identified for Sortie Lab use, and the requirements imposed on

the Sortie Lab program by these payloads.

2. 3. 1 Payload Classification

To facilitate mission planning, design, and development of

the Sortie Lab, a plan is being developed for a space science and appli-

cations program. This program of payload planning can be divided into

four major categories and then can be subdivided into various space

science and application disciplines. The major categories and typical

disciplines are:

. Science

- Astronomy

- Solar Physics

- High Energy Astrophysics

- Atmospheric and Space Sciences
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Planetary

Space Physics

* Applications

Earth Observations

Earth and Ocean Physics

Materials Science and Space
Processing Applications

Communications and Navigation
Research Lab

* Life Sciences

* Space Technology

The definition of Sortie Lab Phase B payloads has been an

iterative process. For the Sortie Lab Phase B study, two sets of re-

presentative payloads were used. In order to differentiate between the

two sets of data, they will be referred to as 1972 and 1973 data.

Table 2. 3-1 lists by discipline the names of the 1972 payloads

and their identification numbers while Table 2. 3-2 lists the payloads as

defined in 1973 for the Sortie Lab. The number of disciplines have in-

creased from 8 to 10 and the number of payloads have decreased from 45

to 30. It can be seen that the emphasis has shifted, i.e., the 1972 data

shows nine earth observations payloads vs. two for the 1973 data; or as in

the astronomy area, four payloads vs. seven in 1972. It should be pointed

out, however, that the 1973 data does include two disciplines as entities un-

to themselves (High Energy Astrophysics and Solar Physics) of which some
parts had been included in the 1972 astronomy category. Three of the

four Space Technology payloads are variations of the Langley Research
Center's Advanced Technology Laboratory and are not equivalent to

the technology discipline of 1972. Instead they are true multi-discipli-

nary payloads and the first that have been conceived and defined for

Sortie Lab.

Of the 30 payloads defined by 1973 data, 6 are new, 9 are

composed of modified 1972 sensors, and 15 contain some or all of the

1972 sensors and/or requirements. In addition, the 1973 data include
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Discipline Number Description

A-i One Meter Photoheliograph

A-2 25 CM XUV Spectroheliograph
32 CM X-Ray Focusing Telescopes
Inner and Outer Coronagraphs

Astronomy A-3 Stratoscope III

A-4 Wide Angle UV (0.3 Meter)

A-5 One Meter Infrared Telescope

A-6 Small UV Telescope (6" - 12" Aperature)

A-7 1.5 Meter Photoheliograph

Communications/
Navigation C/N-l Communications/Navigation Early Lab

EO-1 Meteorology and the Atmospheric Sciences

EO-2 World Land Use Mapping

EO-3 Air and Water Pollution

EO-4 Resource Recognition and Identification

Earth
Observations EO-5 Natural Disaster Assessment and Anomalies

EO-6 Ocean Resources

EO-7 Atmospheric Cloud Physics Experiment and Lab

EO-8 Freezing Drop Experiment

EO-9 Droplet Charging Experiment

Life Sciencs LS-1 Mini - 30 Day Module

MS-I Biological

1. Separation of Biologicals
2. Preservation of Rioloqicals

MS-;, Levitation Experiments

1. Glasses
2. Supercooling
3. Some Crystals

Ma teria Is
Sc i en. MS-3 Furnace Experiments

1. Composite
2. Directional Solidification

MS-4 Small and Low Temperature

1. Physics of Fluids
2. Zone Refining

TABLE 2. 3-1. 1972 SORTIE LAB PAYLOADS
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Discipline Number Description

Planetary P-1 Intermediate Size Planetary Telescope

SP-1 Atmospheric and Magnetospheric Science

SP-2 Cometary Physics

SP-3 Meteoroid Science

SP-4 Small Astronomy Telescope

SP-5 Wake Measurement from Station & Booms

SP-6 Wake Measurement from Subsatellite

Space Physics SP-7 Plasma Resources

SP-8 Wave-Particle Interactions

SP-9 Electron and Ion Beam Injection

SP-1O Cosmic Ray Magnetic Spectrometer

SP-11 Plastic/Nuclear Emulsions

SP-12 Airlock and Boom Experiments

SP-13 Flame Chemistry and Laser Experiments

SP-14 Test Chamber Experiments

T-1 Contamination Measurements (Experimental)

T-2 Contamination Measurements (Monitor)

T-3 Short Term Cryogenics

T-4 Slush Propellant

Technology T-5 Non-Cryogenics No. 1

T-6 Non-Cryogenics No. 2

T-7 EVA (Astronaut Maneuvering Unit)

T-8 EVA (Maneuvering Work Platform)

T-9 Teleoperations (Initial Flight Experiments)

Service Missions LST Large Space Telescope

LSO Large Space Observatory

TABLE 2. 3-1. 1972 SORTIE LAB PAYLOADS (CONTINUED)
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Discipline Number Description

AS-1 UV Astronomy
Astronomy AS-2 IR Astronomy

AS-3 Cometary Simulation
AS-4 Meteoroid Simulation

Solar Physics SO-1 LSO Technology and Verification
SO-2 Sounding Rocket
SO-3 Sounding Rocket (Independent Mount)
SO-4 Semi-Automated Solar Platform
50-5 Large Solar Observatory

High Energy
Astrophysics HE-I Cosmic Ray Survey

HE-2 X-Ray/Gamma Ray Survey

Atmospheric AP-1 Plasma Physics and Environmental Perturbation
and Space Laboratory
Sciences

Earth EO-1 Earth Observatory
Observations EO-2 Zero-g Cloud Physics Laboratory

Earth and EOP-1 Test Bed Payload
Ocean Physics

Space Processing SPA-1 Biological Subelement
Applications SPA-2 General Purpose Subelement

SPA-3 Furnace Subelement
SPA-4 Levitatioh Subelement
SPA-5 Core Subelement
SPA-6 Automated Levitation/Furnace Unit

Communications
and Navigation CNRL-l Communication Navigation Research Lab
Research Lab.

Life Sciencies LS-I Seven Day Dedicated Laboratory
LS-2 Thirty Day Didicated Laboratory
LS-3 Carry-on Mini Laboratory
LS-4 Bio-Research Module

ST-i ATL Payload #1
Space Technology ST-2 ATL Payload #2

ST-3 ATL Payload #3
ST-4 Physics and Chemistry Lab

TABLE 2.3-2. 1973 SORTIE LAB PAYLOADS

payloads which are specifically designed to be operated in the pallet-

only mode (or some non-Sortie Lab configuration e.g., Free Flyer),

whereas the 1972 data included only those payloads which required, in

general, significant amounts of pressurized volume. Table 2. 3-3 pre-
sents a correlation of the 1972 and 1973 payloads. Analysis indicates

that, in general, there are no major features of the 1973 data which
would preclude the baseline Sortie Lab from satisfying the 1973 require-

ments.
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MODIFIED
1973 PAYLOADS 1972 PAYLOADS INCLUDED 1972 PAYLOADS NEW

HIE-1 SPIO

HL-2 X

SO-1 Al, A2 A7

SO-2 X

SO-3 A2

SO-4 A2 X

SO-5 A2, A6 A7

AP-1 SP-5-SP9

SER

ST-1 SP14, T3 MSI,CN1 T4

ST-2 SP4-SP5,SP14,T3,MS1,CN1 ,EO1

ST-3 MS1,CN1

ST-4 SP12,SP13

CNRL CN-1

SPA-1 MSi

SPA-2 MS4

SPA-3 MS3

SPA-4 MS2

SPA-5 (Core equipment) X

SPA-6 (Pallet mission) X

LS-I 7 day flission LS2

LS-2 30 day Mission LS3

LS-3 carry-on LS1

LS-4 (BRM) X

EO-1 EOI-EO6

EO-2 EO7-EO9

EOP-1 EO1-EO6,CNI

AS-1 A4,PI,A6

AS-2 P1 A5

AS-3 - SP2

AS-4 SP3

TABLE 2. 3-3. CORRELATION OF 1972 PAYLOAD DATA WITH
1973 PAYLOAD DATA
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2. 3. 2 Payload Requirements

The payload requirements reflect not only what is necessary

to accomplish the scientific or applications objective but also require-

ments that can be derived from these basic requirements. The former

of these requirements are weight, volume, average power, duration

per cycle, cycles per mission, peak power, peak duration per cycle,

peaks per mission, digital data rate, number of skills, EVA hours,

pointing accuracy, stability and g-level. The latter, "derived" require-

ments, include accommodation mode, digital data per day and manhours

per day.

Table 2. 3-4 summarizes the payload power requirements.

Weight requirements for selected experiments used in the longitudinal

center of gravity analysis are found in Section 2. 6. Manhours per day

and data requirements are found in Section 4.0. Other mission require-

ments are summarized in Section 5.0.

A brief description with general requirements of each of the

disciplines previously shown in Table 2. 3-1 follows.

2.3.2. 1 Astronomy

These payloads are designed to gather data on interstellar

space, stars, quasars, the sun and other planets, and other galaxies.

The primary requirements are to have the payloads outside the earth's

atmosphere, maximize the "dark time" in orbit and minimize earth-

sun-moon interference with viewing. Since most scientific direction

must be from the ground, excellent communications are necessary.

Additional requirements are for a highly stable and pointable platform

with no contamination to affect the sensors.

2. 3. 2. 2 Space Physics

The major objectives of this discipline are to improve under-

standing of the earth's space environment; and, through observations of

gamma, cosmic and x-rays, to further the understanding of the energetic

processes within or near compact objects and in the diffuse matter be-

tween these objects. The orbit must be above the atmosphere, but the
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PEAK DURATION PEAK AVG. CYCLES
POWER PER CYCLE PER POWER DURATION PER

PAYLOAD KW HRS MISSION KW HRS/DAY DAY

A-i .47 Seconds Note 1 ,45 18.8 4
A-2 .76 .05 Note 1 .66 16.2 6
A-3 .51 .02 96 .47 19.2 16
A-4 .76 .75 NA .76 24 8
A-5 .76 .05 96 .66 14.4 16
A-6 .46 .25 NA .42 16 16
A-7 None None None .65 24 16

C/N-1 7.5 .15 5 3.6 12 NA

EO-1 4.3 msecs 10-50 3.4 .5-2.5 2-10
EO-2 5.7 msecs 10-35 4.8 .8-2.8 2-7
EO-3 3.8 msecs 25-30 3.0 1.0-1.2 5-6
EO-4 5.7 msecs 15-35 4.8 .75-1.75 3-7
EO-5 5.4 msecs 10-15 4.6 .10-.15 2-3
EO-6 3.1 msecs 20-50 2.6 1.0-2.5 4-10
EO-7 .2 1.0 24-48 .15 12-24 4-8
EO-8 .1 1.0 36-72 .15 12-24 6-12
EO-9 .1 1.0 36-72 .15 12-24 6-12

MS-1 None NA NA 1.63 9 3
MS-2 3.2 .5 60 1.73 8 4
MS-3 1.6 .5 48 1.63 14 4
MS-4 1.43 .4 24 2.73 24 3

P-i .51 1.0 18 .49 22.5 3

SP-1 1.14 1 msec 4.3x10 3  .69 24 Cont.
SP-2 4 .28 10 1.6 2 2.0
SP-3 .06 1.0 5 .009 22.4 Cont.
SP-4 1.14 1 msec 2.9x10 5  .46 16 Cont.
SP-5 .44 16.0 1 .44 16 1.0
SP-6 .41 .5 4 .41 12 1.0
SP-7 .62 4.0 2 .88 16 1.0
SP-8 .56 .3 1 .56 8 Cont.
SP-9 .77 .3 1 .77 8 Cont.
SP-10 .10 120 1 .10 23.2 Cont.
SP-11 .44 .16 2 .014 23.6 Cont.
SP-12 .27 .1 10 .017 10 Cont.
SP-13 .51 .1 25 .19 10 Cont.
SP-14 2.62 .5 15 .45 9 Cont.

T-i .82 1.0 4 .47 24 Cont.
T-2 Combined with T-I
T-3 4.0 6/day TBD 1.33 24 Cont.
T-4 1.2 .033 TBD .04 24 Cont.
T-5 .5 .002 TBD .17 24 Cont.
T-6 1.8 .1 TBD .89 24 Cont.
T-7 .37 7.5 2 .33 TBD NA
T-8 .40 9.0 2 .33 TBD NA
T-9 .77 .5 TBD .44 5 2

NOTE: 1.16,488-2,748
NA = Not Applicable

TABLE 2. 3-4. POWER REQUIREMENTS FROM 1972 EXPERIMENTS
PAYLOAD DEFINITION
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Van Allen radiation belts must be avoided. Altitudes may range from

100 to 350 n. mi.. Some of the instrumentation requires a low inclination

orbit to avoid the South Atlantic Anomaly while other experiment objecti-

ves can only be accomplished with high inclinations.

2. 3. 2. 3 Planetary

The purpose of the planetary discipline is to develop a space

telescope that will be devoted to observing planets, comets, and aster-

oids. The emitting, reflecting and scattering properties of the planetary

surfaces and atmospheres in the visible, UV, and IR regions will be used

to make synoptic meteorological measurements of entire hemispheres

over long intervals of time. These time intervals do not have to be

continuous but should be periodic.

2. 3. 2. 4 Earth Observations

This series of missions is designed to increase understanding

of the earth and its atmosphere. Orbit altitude may vary over a range

from 100 to 300 n. mi. depending on the sensors and specific mission

objectives. Inclination is also dependent on mission objectives; the

higher the latitude of the sites being observed, the higher the inclina-

tion must be. Payloads may be either automated or man operated, but

in either mode some real time communication will probably be required.

Other factors which may require consideration are lighting constraints

and sensor pointing accuracy and stability.

2. 3. 2. 5 Materials Science

This group of experiments is designed to take advantage of

the unique environment of space flight to define and improve materials

processing methods and technology. There are no orbital requirement

constraints applicable to this set of experiments except that as near

zero - g as possible be provided.

2. 3.2.6 Communication/Navigation Early Lab

The goals of this Communications/Navigation Early Lab are
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to facilitate continued and expanded application of space technology and

satellite systems. Man's unique capabilities as a research scientist in

space may be used to provide for increased national and international

needs for communications with and between earthbound, airborne, and

space-borne terminals, and to improve continually the capabilities for

terrestrial, air, and space vehicle navigation and traffic control.

Orbit selection will be determined by sites to be viewed and

desired frequency of sightings. Man-in-the-loop will permit improved

efficiency, progress monitoring, data evaluation and redirection or

termination for optimum results.

2. 3. 2.7 Life Sciences

Specific areas to be investigated include Biomedicine, Verte-

brate Research, Man/Systems Integration, Space Biology, and Advanced

Technology (Life Suppcrt and Crew Protective Technology, EVA Tech-

nology and Teleoperator Technology). The experiments may be flown

either on dedicated missions or as "flights-of-opportunity." The only

real requirement is that the acceleration level not exceed 10-5g.

2. 3. 2.8 Technology

The technology discipline can be divided into two basic experi-

ment groups: contamination experiments and fluid management experi-

ments.

The object.ves of the contamination experiments, in general.

are three-fold:

a. To identify the types, quantities, spatial distributions,

and effects of contaminants in the spacecraft-induced

external environment.

b. To provide operational support to the manned earth

orbital experiment program.

c. To develop the design data needed to control or eliminate

contar ination effects on future spacecraft and instru-

ments.
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The overall goals and objectives of the fluid management

experiments are to investigate those fluid phenomena which are greatly

affected by gravity. Performing these tests in space utilizing the long-

term zero-g or very low-g levels will provide a better basic under-

standing of fluid physical behavior, and will provide information re-

quired for the design of the next generation life support, space pro-

pulsion and other fluid systems.

2. 3. 3 Mission Requirements

One of the first steps taken in mission planning is to trans-

late the mission/experiment objectives proposed for Sortie Lab into a

set of parameters which can be selected to satisfy these objectives.

This. setof parameters are associated with orbit selection, attitude

requirements, communications and others.

2. 3. 3. 1 Orbit Requirements

Payload altitude and inclination requirements are presented

in Table 2. 3-5.

2. 3. 3. 2 Attitude Requirements

The attitude requirements range from continuous inertial

for celestial observations, to intermittent local attitudes for earth

observations and communications, to that which provides a g-level

lower than 10 - 4 specified for the materials science discipline. For

example, in general, solar targets require a continuous Z-POP in-

ertial attitude (Z-axis perpendicular to the orbit plane). Sensor

gimballing will accommodate P angle variations -- P defined as

the angle between the orbit plane and the solar vector. (At P = 900

sensor viewing will be along Shuttle Z-axis). Other specified celestial

targets can require either an X, Y, or Z-POP inertial orientation

depending upon the orbit plane/target relationship established at

launch. For instance, a Z-POP attitude has been established for the

planetary mission.
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P AYLOAD LT (NMI x 102) INCLINATION (DEG) ALT (NMI x 102) INCLINATION (DEG)PAYLOAD -PAYLOAD
ACCEPT PREFERRED ACCEPT PREFERRED ACCEPT PREFERRED ACCEPT PREFERRED

ASTRONOMY SPACE PHYSICS

1 2-4 2.5 66.5-90 Cont. Sun 1 >1.0 >1.0 55-90 Polar
2 2-4 2.5 66.5-90 Cont. Sun 2 >1.0 >1.0 Any Any
3 2.5-3.6 2.7 Any Any 3 >1.0 >1.5 Any Any
4 2-4 2.5-3.6 Any Any 4 >1.0 >2.0 Any Any
5 2.5-4 2.5 25-70 28.5 5 >1.0 >1.0 28.5-90 >55
6 1-4 2-3 Any 28.5-50 6 >1.0 >1.0 28.5-90 >55
7 2-4 2.7 Any Cont. Sun 7 >1.0 >2.0 -55 90

8 >1.0 >2.0 -55 90
COMMUNICATIONS NAVIGATION ' 9 >1.0 >2.0 55 90

10 Any Low Any 28
1 1.2-4.2 48 N/A 11 2.7 2.0 55 28.5

E2 >1.0 TBD 55 AnyEARTH OBSERVATIONS 12 >1.0 TBD 55 Any
14 >1.0 TBD 55 Any

1 1-2.7 1.0 50 90 14 >1.0 TBD 55 Any
2 1-2.7 1.0 50 90
3 1-2.7 1.0 40 70
4 1-2.7 1.0 50 90 1 TECHNOLOGY
5 1-2.7 1.0 40 70
6 1-2.7 1.0 50 90 1 Any NA Any Any
7 >1.0 2.35 Any Any 2 Any NA Any Any
8 >1.0 2,35 Any Any 3 Any NA Any Any
9 >1.0 2.35 Any Any 4 Any NA Any Any

5 Any NA Any Any
MATERIALS SCIENCE AND 6 Any NA Any Any

MANUFACTURING IN SPACE 7 Any NA Any Any
8 Any NA Any Any

1 Any Any Any Any 9 Any NA Any Any2 y
3
4

PLANETARY

1 2.5-5 -3.25 Any 81

TABLE 2. 3-5. ORBIT REQUIREMENTS FROM EXPERIMENTS
PAYLOAD DEFINITION



Missions with earth targets such as the USA and Satellite

Tracking Data Network (STDN) require fine pointing with the Z-axis

toward the earth only over the targets of interest. There are no pay-

load attitude requirements during other portions of the mission. The

axis system considered is one in which the X-axis lies along the vehicle

axis positive out the tail, the +Y-axis points along the right wing, and

the +Z-axis points out the cargo bay.

2. 3. 3. 3 Communications Requirements

The orbiter is presently baselined to provide all communication

support for the Sortie Lab and payload by sharing its voice. TV, analog,

UHF, VHF, and S-band links to the STDN ground stations. Tracking

Data Relay Satellites (TDRS) may be included in the communication inter-

face network.

Maximum requirements have been summarized from a re-

presentative field of candidate Sortie Lab payloads and are listed below:

Real Time Payload Support Requirements:

* Digital 24 MBS

* Analog 5 MHz

* TV/Video Color

* Voice Duplex

Near Real Time Payload Support Requirements:

* Digital 2. 5 MBS

* Analog 100 KHz

* TV/Video BW/Color

* Voice

In general, the Sortie Lab payloads require less than 1 MBS output to

the ground or TDRS.

2. 3. 3. 4 Additional Considerations

Additional requirements may be imposed upon Sortie Lab

missions such as satellite deployment, servicing, and retrieval.
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Spacecraft for delivery and retrieval missions vary from small, Ex-
plorer-class satellites, to free-flying observatories, to planetary and
lunar probes. Retrieval missions will allow satellites to be returned
for major refurbishment or modifications. These missions may utilize
the pallet only or a combination pressurized module and pallet. The
pallet would serve as structural support for the payload and the pressuri-
zed module, or Orbiter cabin, and would provide support for checkout
and activation.

The Sortie Lab also will be designed for man tending large
automated satellites such as the Large Space Telescope (LST). It will
be outfitted with equipment required to check out , activate, service,
repair, or modify the element being serviced.

2.3.4 Payload Integration Equipment Requirements

Compatibility of the payloads with the basic Sortie Lab sub-
systems was assessed and integration/support equipment was identified.
This assessment was accomplished by reviewing the payload require-
ments and verifying that the subsystem capabilities were adequate to
satisfy those requirements. In cases where the Sortie Lab subsystem
was inadequate to satisfy the payload/experiment requirements or the
effects of the natural or induced environment exceeded what the experi-
ment could stand, equipment was derived (see Table 2. 3-6) to bridge
the gap between basic capability and requirement. This equipment in-
cluded: (1) interface or support type equipment (other than basic Sortie
Lab equipment) necessary to install the experiment in the Sortie Lab
or to adapt the payload/experiment to the space environment and (2)
subsystem add-ons constituting additions to basic capabilities.

2.4 Sortie Lab Elements

A set of Sortie Lab elements (Figure 2.4-1) was defined for
use during the Phase B study. The elements, consisting of a pressurized
module and a pallet satisfied the basic study requirements, Level I guide-
lines, derived requirements from Task 4. 1, and the interface require-

2-30



EXPERIMENT INTEGRATION/ SUPPORT EQUIPMENT

PAYLOAD DISCIPLINE

[ ",

High Energy Astrophysics X X X

Communication/Navigation Lab X X X X X X X X X

00 00 ~ ~ , 0,; 0, A. e%/

PAYLOAD DISCIPLINE 3-6. REPRESENTATIVE PAYLOAD INTEGRATION

Astronomy X x 1- T RE i ENTSx

Solar Physics X X X x x x X x

High Energy Astrophysics X X X

Atmosphere & Space Physics X X X

Earth Observations X I i 1X X

Earth & Ocean Physics X X X rX X

Space Processing Applications X X x X X X X X

Cormunication/Navigation Lab X X X X X X X X X

Life Science x X x x

Space Technology X X X X X X X

Planetary- I -------------------------------

TABLE 2. 3-6. REPRESENTATIVE PAYLOAD INTEGRATION
EQUIIMENT REQUIREMENTS



UNDEPLOYED CONCEPT

I 3

ELEMENTS

I I

PRESSURIZED LAB PALLET

I I
- CONFIGURATIONS -

MODULAR DESIGN

10D ATTACHED PALLET PALLET ONLY

SUPPORT EXPERIMENT
MODULE MODULE

FIGURE 2.4-1. SORTIE LAB CONFIGURATION CONCEPTS

ments. This family of elements permits a variety of options dependent

on annual funding level and experiment program requirements. The

mounting of external equipment can be accommodated by adding a pallet,

which provides the sensor-mounting area. The recommended elements

and their required interfaces are summarized in the following sections.

2.4. 1 System Interfaces

Interface characteristics are of vital importance since key

features of the Sortie Lab configuration are based on the design and

capability of the interfacing systems. The Sortie Lab mission requires

that the Sortie Lab interface with many program items including the

shuttle orbiter, ground facilities and payloads. There are also inter-

face connections between the Sortie Lab elements. A summary of the

interface connections for each element is presented in Section 3. 5.

2.4.2 Pressurized Module

The primary purpose of the pressurized module is to provide

an enclosed, protective environment for the application of scientific
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research. The enclosed environment permits direct involvement by

principal investigators or their representatives in a shirtsleeve mode.

The modules, singly or in combination, contain the subsystems neces-

sary to maintain the habitable environment and provide direct support

to experiment apparatus such as structural mounts; power; thermal

control; communications; data management; and supplemental facilities

such as airlocks for unique experiment requirements. Additionally,

the pressurized Sortie Lab provides an interface between the payloads

and shuttle orbiter. A detailed description of the pressurized module

is provided in Section 3. 0.

2.4.3 Pallet

The primary purpose of the pallet is to provide a mounting

surface for large payloads requiring direct exposure to space and real

time, manned, participation with no maintenance of the external experi-

ment during on-orbit operation. Sortie Lab pallets are applicable

either attached to a pressurized module that provides the subsystem

service provisions for the pallet or in a pallet only mode where the

subsystems provisions are supplied by the Shuttle. A detailed des-

cription of the pallet is provided in Section 3. 3.

2. 5 Summary User Provisions

2. 5. 1 Payload Support Equipment

In addition to the basic Sortie Lab module and pallet there is

under definition special ancillary payload support equipment that can

be provided as optional add-ons when required by a specific mission.

This equipment includes such items as: scientific airlocks, a stable

platform, a film vault, and optical windows. Any or all of this equip-

ment can be included on any given mission depending on the specific

mission requirements. Descriptions of some of these major add-on

items follow.
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2. 5. 1. 1 Scientific Airlock

The airlock is intended for use in deploying experiments to

the space environment. The experiments can be mounted to an experi-

ment platform that is connected to an extension or deployment mechanism

(for localized deployment out of the airlock) or to a stabilized platform

that is mounted on the experiment platform. Extension mechanisms of

30 feet and 200 feet lengths are currently being evaluated. The airlock

will have an approximate volume of 46 cubic feet with a 44-inch diameter

and will be 52 inches in length. See Section 3.2 for further discussion

of the scientific airlock.

2.5. 1.2 Stable Platform

A pallet-mounted stable platform will augment the orbiter's

stabilization provisions by accommodating experiments requiring high

pointing accuracies and stabilities. The platform or Standard Experi-

ment Pointing Base (SEPB) will accommodate instruments up to 85

inches in diameter and 15 feet long. The SEPB consists of a set of

coarse, wide angle gimbals and a set of fine, narrow angle gimbals.

The fine gimbals used in conjunction with the coarse gimbals provide

a pointing accuracy capability of 1 arc second. See Section 3. 3. 10

for further discussion of the SEPB.

2. 5. 1. 3 Film Vault

A radiation shielded stowage container suitable for storing

exposed and unexposed film will be provided. Approximate dimensions

and weight of the film vault are: volume - 7. 5 cubic feet, wall thick-

ness - 0. 5 inch, and weight - 100 pounds.

2.5. 1.4 Optical Windows

Several windows suitable for scientific observation will be

available.

2. 5. 1.5 View Ports
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View ports will be available in the pressurized module for

viewing the pallet and experiments. One 12-inch diameter port will be

located in the module's sidewall and an 8-inch port will be located in

each pressure hatch.

2.5. 1. 6 External Contamination Monitor

A system for measuring the amount and type of contamination

collection on the outside of the orbiting body will be available.

2.5. 1.7 Vacuum System

A vacuum system will be available to connect instruments and/

or equipment inside the pressurized module to the surrounding vacuum.

2.5. 1. 8 Miscellaneous

In order to effectively support a broad spectrum of scientific

disciplines, certain special design features are inherent to the basic

Sortie Lab concept for universal experiment payload accommodation.

These features include work benches, removable equipment racks, re-

placeable hatches for instrument mounting, deployable booms, data

processing and recording equipment, storage lockers and utility ser-

vices with standardized interconnects.

2.5.2 Resources Available to Experiments

A summary of Sortie Lab resources available for experiment

use is given in Table 2. 5-1. Resources to maintain basic Sortie Lab

functions and support are not included in the values given.

2. 6 Mass Properties Summary

A weight summary of the weight baseline Sortie Lab is pre-

sented in Table 2.6-1. This particular configuration consists of a 14-

foot tunnel, 5-foot sidewall Support Module (SM), 10-foot sidewall Ex-

periment Module (EM) and 10-foot pallet. This configuration was

weight tracked (compared) to the 20, 000 pound Sortie Lab design weight

during Phase B.
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PARAMETER PRESSIRIZED MODULE PALLET

Physical

Payload Weight i2,000 lb (Sortie Lab pressurized 20,000 lb (Pallet Only Mi;sion)
and unpressurized)

Dimensions 14 ft
Floor Width 11.3 ft 12 ft
Length 8.75 - 18.15 ft (EM) 5 ft and 10 ft segments.

(With combinations of the 5 ft and
10 ft segments pallet lengths to 60
ft are theoretically possible.)

Environment

Composition 80% N2/20% 02

Pressure 14.7 psla
Temperature 74 + 20 F

CO2 Partial Pressure 0-7.6 mm Hq (Design Req.)
53 mm Hg (Expected Nominal)

Relative Humidity 45 + 5% at 700 F
Cleanliness Level Class 100,000

Thennal Control Fluid lines connected to either the
pressurized module or Orbiter

Heat Rejection (Total available) 4-5 kw 1 .kw
Air Cooling N/A

Cabin (70 + 100 F) 1 kw
Racks (75 1050 F) 3-4 kw

Cold Plates (45 - 860 F) 4-5 kw 1 kw

Electrical Power Derives power from the Sortie Derives power from either
Lab fuel cell and the Orbiter. the pressurized module or the
Orbiter Provisions: 3 kw av. Orbiter.

6 kw peak
See Section 3.1.4 See Section 3.1.4

Average 4.1 kw
Peak 6.0 kw (for 6 minutes)
Type 28 v dc and 115 v 400 hz ac
Total Energy Available 293 kwh

Communications Via Shuttle Orbiter

Control & Monitor Hardline to the pressurized
module; TV cameras

Data Mana gement Serviced by the pressurized
module or a payload furnished

Computers computer located in the orbiter

Word Length 32 bits
Memory Size 13k

Speed 2-4 microseconds

Data Stowage 40 reels (Digital & Video)

Recorders

Digital
Response Up to 50 mbps
lime/Reel 30 minutes

Data Manageeqnt (Cont'd)

Recorders (Cont'd)
Video Color
Control and Display Integrated Console See Comunications

Stabilization & Control Accuracy Acceleration Accuracx Acceleration

RCS in the orbiter + 0.50 10-
4 
g

CMG's + 1 min 10-

Standard Experiment
Pointing Base (SEPB)

Coarse Gimbals 1 imin
Fine Gimbals + I sec

TABLE 2.5-1. RESOURCES AVAILABLE TO EXPERIMENTS
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Wei ght

Pallet (10 feet) 1407

Tunnel (14 feet) 815

Structure
Support Module & Forward Bulkhead 2982
(7.75 feet)
Experiment Module & Aft Bulkhead 3124
(12.75 feet)

Environmental Control System 3139

Electrical Power System 2116

Electronics 1872

Crew Systems 685

Experiment Provisions 800

Expendables/Residuals (at landing) 843

TOTAL 17783

TABLE 2. 6-1. SORTIE LAB WEIGHT SUMMARY (POUNDS)

The following items are weight charged to the 12, 000 pounds

Experiment Design Weight if they are required for a particular mission:

Experiment(s)

Experiment integration equipment

OMS kit(s) 1 = 2350 pounds at landing

2 = 3505 pounds at landing

3 = 4715 pounds at landing

Scientific Airlock, 350 pounds

*Crew and their equipment in excess of the 2 + 2 crew

weight charged to the orbiter

*Extended mission (duration >7 days) consumables, etc.

Pallet lengths can be 10, 15, 20, 25, etc. feet, i.e., the

first section is 10 feet plus a pallet adapter which overlaps the aft bulk-

head of the pressurized module. The adapter can be omitted on pallet

only missions. A 25-foot pallet was the maximum length required to

*See Table 2.6-2
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MISSION DURATION

7 Days 30 Days

Launch Landing Launch Landing

4 Man crew - - 2398.5 2090.9
(Shuttle)

5 Man crew
(Shuttle & Sortie Lab) 517.8 498.5 3677.6 3225.6

6 Man crew 1035.4 996.7 4768.4 4256.6
(Shuttle & Sortie Lab)

7 Man crew 1549.9 1491.9 5789.6 5217.9
(Shuttle & Sortie Lab)

8 Man crew 2068.2 1990.8 7334.6 6703.1
(Shuttle & Sortie Lab)

EVA Equipment 399.1 399.1 399.1 399.1

ECS - - 302.9 150.3

EPS - - 11924.0 4024.3

TABLE 2.6-2. WEIGHT (POUNDS) PENALTY FOR MISSIONS WITH
LARGE CREWS AND EXTENDED DURATION
(CHARGEABLE TO SORTIE LAB)

accommodate the 1972 experiments; pallet lengths to 60 feet are theo-

retically possible. Pallet weights are presented in Table 2. 6-3.

The flexible tunnel, 2 to 14 feet, weighs 815 pounds. For

missions requiring longer tunnels to meet orbiter longitudinal center of

gravity constraints weight is added at the rate of 50 pounds per foot.

Pressurized module subsystem weights are presented in

Table 2.6-4 for SM/EM combined sidewall lengths of 11, 15 and 21

feet, i.e., 5-foot SM plus 6, 10, and 6 + 10 foot EM(s).

A longitudinal center of gravity (CG) analysis of the Sortie Lab

in various mission configurations, utilizing the Phase B, 1972 grouping

of experiments is presented in Table 2. 6-5. A summary curve is pre-

sented in Figure 2.6-1 in which all payloads are plotted against the 2

percent orbiter CG curve (65 to 67 percent spread) as reported in speci-

fication JSC 07700, Volume X, "Space Shuttle Flight and Ground System

Specification, " dated March 20, 1973. In this analysis, each Sortie Lab

configuration is positioned as far aft as possible and a tunnel long enough
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PALLET LENGTH
(FT) 10 15 20 25

PALLET WT. 1407 1970 2533 3096
(LBS)

TABLE 2.6-3. PALLET WEIGHT SUMMARY

WEIGHT (POUNDS)
FOR EX/SUPT MODULE LENGTHS OF

11 FT. 15 FT. 21 FT.

Structure 5113 6106 7722

ECS' 2952 3139 3418

EPS 2116 2116 2116

Electronics 1872 1872 1872

Crew Systems 685 685 685

Expt. Provisions 800 800 800

Expend/Residuals 789 843 922
at Landing

14,327 15,561 17,535

TABLE 2.6-4. EXPERIMENT MODULE/SUPPORT MODULE
WEIGHTS
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B C D E H
F

UNIT FLEX SUPPORT EXPERIMENT AFT ADAP PALLET
TUNNEL MODULE(SM) MODULES (EM) BKHD TER

LENGTH 2-14 7.75 6 10 2.75 OVER 10 5(FT) LAP

1849(O'EM)
WEIGHT 815 2196(6'FM)i 1681 2674 450 263 1144 563
(LB) 2437(10'EM

12795(16'EM)

SORTIE LAB CG CURVE MARGIN TOTAL EXPERIMENT PALLET CONFIG-
PAYLOAD WEIGHT X WEIGHT X INT EXT LENGTH MODULES

(LB) (FT) (LB) (FT) (LB) (LB) (FT) URATION

EO7A 16113. 33.94 26770. 12.06 60.0 200. 0. 0.00 25 8 11 32 AABCE
EO8A 16113. 33.94 26770. 12.06 60.0 200. 0. 0.00 25 8 11 32 AABCE
EO9A 16113. 33.94 26770. 12.06 60.0 200. 0. 0.00 25 8 11 32 AABCE
LS1 27282. 37.57 37718. 7.78 60.0 10135. 0. 0.00 25 9 12 31 AABDE
LS2 24376. 38.49 40624. 10.06 60.0 5255. 0. 0.00 25 10 13 30 AABCDE
MS1 19535. 35.75 37630. 10.49 60.0 2388. 0. 0.00 25 9 12 31 AABDE
MS2 22168. 37.83 42832. 10.67 60.0 3047. 0. 0.00 25 10 13 30 AABCDE
MS3 21866. 37.73 43134. 10.76 60.0 2745. 0. 0.00 25 10 13 30 AABCDE
MS4 19021. 35.58 36383. 10.75 60.0 1874. 0. 0.00 25 9 12 31 AABDE
SP10 16014. 33.90 26643. 12.14 60.0 101. 0. 0.00 25 8 11 32 AABCE
SP14 16526. 34.10 27295. 11.73 60.0 613. 0. 0.00 25 3 11 32 AABCE
Al 29079. 38.16 35921. 7.66 60.0 429. 10500. 20.00 5 8 11 16 AABCEFGHH
A4A 25646. 40.11 39354. 11.05 60.0 426. 7900. 10.00 25 8 11 14 30 AABCEFG
A6 19264. 32.18 15261. 7.14 60.0 364. 750. 20.00 5 8 11 16 AABCEFGHH
A7A 30299. 35.26 22113. 4.33 60.0 346. 11490. 25.00 2 8 11 17 AABCEFGHHH
E01 24246. 31.14 6716. 2.78 60.0 2976. 2086. 20.00 3 9 12 16 AABCEFGHH
E02 24773. 30.90 5454. 2.26 60.0 3877. 1712. 20.00 3 9 12 16 AABCEFGHH
E03 23269. 34.15 20921. 6.33 60.0 3413. 985. 15.00 23 9 12 15 AABDEFGH
E04 24706. 30.91 5559. 2.31 60.0 3787. 1735. 20.00 3 9 12 16 AABDEFGHH
E05 24201. 30.69 5439. 2.36 60.0 3540. 1477. 20.00 3 9 12 16 AABDEFGHH

TABLE 2.6-5. LONGITUDINAL CENTER OF GRAVITY ANALYSIS



SORTIE LAB CG CURVE MARGIN TOTAL EXPERIMENT PALLET

WEIGHT X WEIGHT X L INT EXT LENGTH
PAYLOAD (LB) (FT) (LB) (FT) (FT) (LB) (LB) (FT) MODULES CONFIGURATION

E06 23495. 26.52 -2276. -1.42 60.0 2910. 1088. 25.00 21 9 12 17 ABDEFGHHH
SPI 19594. 37.12 45406. 11.81 60.0 397. 639. 10.00 24 9 12 14 AABDEFG
SP2 19278 36.77 45722. 11.72 60.0 487. 233. 10.00 24 9 12 14 AABDEFG
SP3 18999. 36.58 46001. 11.77 60.0 366, 75. 10.00 24 9 12 14 AABDEFG
SP4 19121. 36.71 45879. 11.79 60.0 353. 210. 10.00 24 9 12 14 AABDEFG
SP5 17898. 35.69 38565. 11.88 60.0 3. 575. 10.00 25 8 11 14 30 AABCEFG
SP6 19609. 36.80 45391. 11.48 60.0 912. 139. 10.00 24 9 12 14 AABDEFG
SP7 17724. 35.54 37243. 11.90 60.0 4. 400. 10.00 25 8 11 14 30 AABCEFG
SP8A 19124. 35.88 39336. 10.95 60.0 1404. 400. 10.00 25 8 11 14 30 AABCEFG
SP9A 17964. 35.48 36447. 11.61 60.0 444. 200. 10.00 25 8 11 14 30 AABCEFG
SP12 24830. 40.66 40170. 12.00 60.0 838. 5434. 10.00 24 9 12 14 AABDEFG
SP13 24970. 40.67 40030. 11.94 60.0 978. 5434. 10.00 24 9 12 14 AABDEFG
TI/2 22195. 33.41 17768. 6.23 60.0 1146. 191. 10.00 7 26 9 12 14 (DM)AABDEFG
T3 31339. 36.39 33342. 5.12 60.0 1250. 10905. 20.00 3 9 12 16 AABDEFGHHT5 23728. 37.71 41272. 9.63 60.0 5090. 80. 10.00 24 2 12 14 AABDEFG
T6 21352. 36.65 43648. 10.02 60.0 2110. 1405. 15.00 6 8 11 15 AABCEFGH
T7 26048. 28.32 -1866. -0.92 60.0 1538. 1490. 15.00 7 27 10 13 15 (DM)ABCDEFGH
T8 28820. 30.64 663. 0.24 60.0 1552. 4248. 15.00 7 27 10 13 15 (DM)ABCDEFGH
T9 19789. 36.40 45117. 10.94 60.0 600. 1352. 15.00 6 8 11 15 AABCEFGH
A2 32880. 39.52 32120. 7.78 60.0 450. 14280. 20.00 5 8 11 16 AABCEFGHH
A3PA 30892. 31.77 2111. 0.64 60.0 430. 10900. 15.00 22 8 11 15 18 ABCEFGH(OMS)
A4P 27371. 30.65 2151. 0.82 60.0 426. 7900. 10.00 4 8 11 14 30 18 AABCEFG(OMS)
A5PA 28217. 30.99 2266. 0.82 60.0 430. 8225. 15.00 22 8 11 15 18 ABCEFGH(OMS)
A7P 31398. 31.93 2203. 0.65 60.0 346. 11490. 15.00 22 8 11 15 18 ABCEFGH(OMS)
P1PA 43458. 34.15 674. 0.10 60.0 429. 23467. 15.00 22 8 11 15 18 ABCEFGH(OMS)
SP8P 20849. 27.72 2253. 1.45 60.0 1404. 400. 10.00 4 8 11 14 30 18 AABCEFG(OMS)
SP9P 19689. 27.62 3234. 2.23 60.0 444. 200. 10.00 4 8 11 14 30 18 AABCEFG(OMS)
EO7P 17838. 26.71 3647. 2.96 60.0 200. 0. 0.00 4 8 11 32 18 AABCE(OMS)
EO8P 17838. 26.71 3647. 2.96 60.0 200. 0. 0.00 4 8 11 32 18 AABCE(OMS)
EO9P 17838. 26.71 3647. 2.96 60.0 200. 0. 0.00 4 8 11 32 18 AABCE(OMS)

TABLE 2.6-5. LONGITUDINAL CENTER OF GRAVITY ANALYSIS (CONTINUED)



WEIGHT X LENGTH
(LB) (FT) (FT)

2 Flex Tunnel 1040.0 9.250 18.500

3 Flex Tunnel 1090.0 9.750 19.500

4 Flex Tunnel 961.0 8.458 16.917

5 Flex Tunnel 1290.0 11.750 23.500

6 Flex Tunnel 1540.0 14.250 28.500

7 Docking Module 2700.0 3.083 8.000

8 Supt Mod,UNDPL 6 12196.0 5.650 7.750

9 Supt Mod,UNDPL 10 12437.0 5.912 7.750

10 Supt Mod,UNDPL 16 12795.0 6.440 7.750

11 6 Ft Exp Mod 2131.0 4.088 8.750

12 10 Ft Exp Mod 3124.0 6.095 12.750

13 16 Ft Exp Mod 4740.0 9.018 18.750

14 10 Ft Pallet 1407.0 4.184 10.000

15 15 Ft Pallet 1970.0 6.560 15.000

16 20 Ft Pallet 2533.0 8.992 20.000

17 25 Ft Pallet 3096.0 11.448 25.000

18 OMS Kit No 1 2350.0 53.750 12.500

21 Flex Tunnel 840.0 7.250 14.500

22 Flex Tunnel 915.0 8.000 16.000

23 Flex Tunnel 1340.0 12.250 24.500

24 Flex Tunnel 1590.0 14.750 29.500

25 Flex Tunnel 1586.0 14.708 29.417

26 Flex Tunnel 1190.0 10.750 21.500

27 Flex Tunnel 815.0 5.250 10.500

28 Flex Tunnel 815.0 3.500 7.000

30 Radiator Overhang 0.0 2.000 4.083

31 Radiator Overhang 0.0 5.000 10.083

32 Radiator Overhang 0.0 7.000 14.083

TABLE 2.6-5. LONGITUDINAL CENTER OF GRAVITY ANALYSIS
(CONTINUED)
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80
ORBITER 2% C.G. ENVELOPE
(65% - 67% SPREAD)

ORBITER AT LANDING

60 WEIGHT 154626 LBS.
.,S;. (X) 66.77% L
L 107.500 FT

ORBITER AT ENTRY
WEIGHT 156617 LBS.
C.G. (X) 66.85% L

40- L = 107.500 FT.

:X X 32 K

-JX

20 ×

0 10 20 30 40 50 60

DISTANCE FROM FORWARD END PAYLOAD ENVELOPE, FT.

FIGURE 2.6-1. SORTIE LAB CENTER OF GRAVITY

to reach the SM is provided. In some cases the radiator overhang limits

positioning of the Sortie Lab aft in the bay. The baseline radiator is 26

.:.,t. long and measures 22. 83 feet from the aft end of the SM (no aft bulk-

head). As the experiment payloads become more firmly defined additional

CG analyses will be necessary and requirements will be imposed to

assure tha.t all payloads fall within the CG constraints.

Mass properties of individual modules are summarized in

Table 2. 6-6.

For module mass properties accounting purposes, the EM(s)

and aft bulkhead consist of structure only. All other subsystems weight

is accounted for in the SM (Table 2.6-6). The following are those items

on or in the EM(s) and/or aft bulkhead, which are weight charged to the

SM.
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6'EM + BHD 10'EM + BHD 16'EM + BHD

Thermal coating
& insulation 178 lb 263 lb 388 lb

ECS ducting 112 lb 185 lb 296 lb

Misc. supports 122 lb 203 lb 325 lb

412 lb 651 lb 1009 lb
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CENTER OF GRAVITY MOMENT OF INERTIA

MODULE DESCRIPTION WEIGHT INCHES SLUG - FT
2

(LBS) Ix

S0 Z = 4 Tunnel - 2 Ft 815.0 12.0 0.0 400.0 171.1 94.0 94.0
(NOTE: Basic - 14 Ft 815.0 84.0 0.0 400.0 171.1 499.0 499.0tunnel length is - 20 Ft 1115.0 120.0 0.0 400.0 234.0 1272.2 1272.214 Ft. Add 50 - 30 Ft 1615.0 180.0 0.0 400.0 339.0 3934.2 3934.2pounds/foot for
additional tunnel
lengths.)

X=0 X 0Support Module (0' EM) 11849 32.5 0.2 403.6 12871.0 12541.0 11865.0Support Module (6' EM) 12196 34.8 0.2 403.5 13209.0 12700.0 12023.0- Support Module (10 EM) 12437 37.9 0.2 403.4 13443.0 12810.0 12132.0
Support Module (16' EM) 12795 44.3 0.2 403.3 13790.0 12973.0 12295.0

Z = 400
(NOTE: Includes all
sibsystems to support
.3rious lengths of EM.)

X 0 (NOTE: Structure
only.) Exp. Module - 6 Ft 2131 49.0 0.0 382.0 2251.0 1425.0 i6l1.0Exp. Module - 10 Ft 3124 73.1 0.0 379.6 3345.0 2750.0 3092.0Exo. Module - 16 Ft 4740 108.2 0.0 375.9 5198.0 6427.0 6973.0

Z 400

X=O

Aft Bulkhead 450 18.0 0.0 400.0 290.0 148.0 148.0

Z = 400

TABLE 2.6-6. MASS PROPERTIES STATUS



CENTER OF GRAVITY MOMENT OF INERTIA

INCHES SLUG - FT2

MODULE DESCRIPTION WEIGHT

(LBS) X Z X Iy IZ
I X = 0

Pallet - 10 Ft 1407 49.2 0.0 353.3 913.0 1143.0 1325.0
Z =400

(NOTE: Pallet
includes weight of
overlap.)

2.75

XI =o

Z = 400 Pallet - 5 Ft 563 30.0 0.0 352.9 354.0 175.0 238.0

-- 5' --

* For variable lengths of tunnel
over 14 feet.

L = Total length - Ft

W = 115 + 50(L) Lbs

Ix = .209907(W) Slug - Ft2

y = z = W(486.25 + 12L2) Slug - Ft2

4633

TABLE 2.6-6. MASS PROPERTIES STATUS (CONTINUED)



3. 0 CONFIGURATION DEFINITION

The autonomous Sortie Lab design study concluded with a
definition of a family of Sortie Lab elements that were fully responsive

to the study requirements. The elements consist of a pressurized mod-
ule and a pallet. The pressurized elements are: (1) flexible tunnel,
(2) variable length experiment module (3) a 5. 0-foot support module

and (4) two 2 .75-foot bulkheads. The addition of a variable length
structural pallet provides a mounting area to accommodate externally
mounted payloads.

The MSFC Phase B concept of the Sortie Lab is basically a
self- sufficient system with minimum shuttle interface to minimize
shuttle refurbishments costs and recycle time. Some of the orbiter
capability, however, is used by the Sortie Lab. This includes the crew
seats and restraints during boost and entry, sleeping accommodations,
food and hygiene facilities for two payload crewmen, and communication
and electrical power resources.

Descriptions of the Sortie Lab family elements, (pressurized
and unpressurized) resulting from the design study effort are described
in this section.

Major features are:

a. A 14-foot-diameter pressure shell variable in overall

length.

b. Subsystems that provide essential resources for the

crew and experiment payload.

c. An interior arrangement consisting of a control and dis-
play console for management of subsystem and selected
experiments and provisions for easy installation and
removal of experiment equipment peculiar to each pay-
load.

d. Provisions for interfaces with the orbiter and shuttle

ground support facilities.
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e. A removable bulkhead, which can be removed for install-

ing experiments, or replaced by special bulkheads for

external experiment sensors.

The general arrangment of the Sortie Lab is presented in

Figure 3. 0-1. Sortie Lab characteristics for a typical payload are

listed in Table 3. 0-1.

3. 1 Support Module Definition

3. 1. 1 Configuration

The support module's primary structure consists of a 14

foot diameter, constant-section cylinder 5 feet in length. A 32-degree

conical bulkhead is attached at the forward end of the cylinder. The

forward conical section is mated to a flexible crew transfer tunnel

that forms the physical interface with the orbiter. A 40-inch diameter

hatch is located at the forward bulkhead and crew tunnel interface and

opens inward. Atmospheric storage bottles are located around the

forward conical section (Figure 3. 1-1). Located within the forward

skirt, are two cryogenic oxygen tanks, three cryogenic hydrogen tanks,

2 nitrogen gas tanks, one fuel cell, fuel cell ancillary equipment, ther-

mal control components and an interface panel (see Section 3. 1.4).

Attached at the forward bulkhead and cylinder intersection is a 26-foot

deployable radiator. The forward conical bulkhead is penetrated by

fuel cell cabling, forward external control and monitor circuit, ther-

mal control fluid lines, and the cabin atmosphere relief and vent valve.

External to the constant-diameter section of the support mod-

ule is protective insulation and a meteoroid bumper.

The internal features of the support module are styled by the

horizontal floor arrangement. The floor location is 44.00 inches be-

low the vehicle horizontal centerline. The interior floor is the primary

and direct structural interface with most of the internal subsystems and

experiment equipment.

3-2



SEGMENTED PALLET

EXPERIMENT MODULE

EXPERIMENT MODULE MOL

SUPPORT MODULE 5.0

10.0'
2.75'

FLEXIBLE TUNNEL 2.75'
6.0

5.0'

3.4'

VARIABLE

FIGURE 3.C-1. SORTIE LAB CONFIGURATION



OVERALL LENGTH 253.8 in. (71.1 ft.)

CONSTANT SECTION SIDE WALL I.ENGTH 180.0 in. (15.0 ft.)

INTERNAL DIAMETER, PRESSURE SHELL 162.0 in. (13.5 ft.)

EXTERNAL DIAMETER 168.0 in. (14.0 ft.)

INTERNAL VOLUME 2488 ft
3

FLOOR ARRANGEMENT LONGITUDINAL

SUPPORT FITTINGS (QUANTITY) 3

HATCHES 2 AT 39.0 in. DIA

VIEWPORTS I AT 12.0 in. DIA IN SIDEWALL
2 AT 8.0 in, DIA IN HATCH

CREW COMPLEMENT 6 MAX

MISSION DURATION 7 DAYS NOMINAL

ELECTRICAL POWER SYSTEM

POWER SOURCE 1-7 KW CONT DUTY FUEL CELL

LO2 TANKS, 26.5 in. O.D. 2-SHARED WITH LIFE SUPPORT

LH2 TANKS, 31.8 in. O.D. 3

DISTRIBUTION VOLTAGE 28 VOC; 115 VAC, 400 HZ

COMMUNICATIONS SHUTTLE PROVIDED

DATA MANAGEMENT SYSTEM
DATA HANDLING TAPE RECORDING

ENVIRONMENTAL CONTROL SYSTEM

ATMOSPHERE PRESSURE 14.7 PSIA; pp 02 3.1 PSIA

pp CO2  f3 mm HG

ATMOSPHERE TEMPERATURE SELECTABLE

WASTE WATER TANKS 1

H20 BY-PRODUCT STORAGE TANKS 1

N2 TANKS 25.3 in. O.D., 3000 PSIA 2

CO2 REMOVAL LiOH

THERMAL CONTROL SYSTEM

EXTERNAL LOOP FREON 21

INTERNAL LOOP H20

EQUIPMENT COOLING AIR

RADIATOR AREA 750 ft
2

COOLING CAPACITY, RADIATOR 29.200 BTU/HR MAX

PRELAUNCH & POST LANDING GSE

CONTROLS AND DISPLAYS CONSOLE INTEGRATED CONSOLE

HABITABILITY SHUTTLE PROVIDED

WEIGHT 22,173 LBS

TABLE 3. 0-1. PRESSURIZED MODULE CHARACTERISTICS FOR
EXPERIMENT EO -4
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CREW TRANSFER TUNNEL

FIGURE 3. 1-1. SORTIE LAB SUPPORT MODULE

The ECS subsystem and ducting influence the internal arrange-

ment. The active components are located radially around the pressure

shell, with supply ducting routed around the side of the cylindrical sec-

tion and then rearward with return ducting under the floor.

The major equipment items (exclusive of experiment payloads)

are the control and display console, components of the communication

and data system, atmosphere regulation and control components, water

stowage tank, and the electrical power subsystem.

module. It is a metal structure of 2219 Al alloy. The principal sections

of the structure are the flexible crew transfer tunnel, forward skirt,

35-5
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3. 1. 2. 1 Flexible Crew Transfer Tunnel

The flexible crew transfer tunnel (Figure 3. 1-2 and 3. 1-3)
is an inflatable cylindrical structure with envelope dimensions as shown
in Figure 3. 1-4. A system of cables and tension rings (Figure 3. 1-5)
are incorporated to maintain tunnel stability. End plates or bulkheads
at the ends of the tunnel provide support points for the cable pulleys and
serve as the attachment ring for the tunnel fabric. In addition, the end
plates establish the interface for the Sortie Lab and Shuttle with the
tunnel.

The tunnel wall structural details are shown in Figure 3. 1-6.
The tunnel wall consists of four structural elements: inner pressure
bladder, fabric structural sleeve, micrometeoroid barrier and outer
cover.

3. 1.2. 2 Forward Skirt

The forward skirt is 51 inches long, 14 feet in diameter and
basically is an extension of the cylindrical section. The skirt serves
as a mount for the cryogenic tanks, fuel cells, and subsystems com-
ponents (Figure 3. 1-7). All structural components of the forward skirt
are 2219 Al alloy.

3. 1. 2. 3 Conical Bulkhead

The 3 2 -degree conical bulkhead provides the transition be-
tween the 14-foot diameter cylindrical sidewall and the pressure hatch.
The bulkhead is constructed of 2219 Al alloy segments. The segments
are 0. 100 inches thick skin with integrally machined stiffeners, 0. 125
inches thick by 1. 250 inches deep on equally spaced 4-degree centers
(Figure 3. 1-8). The bulkhead bolts to the primary end ring of the
cylindrical section at the aft end and also mates to the flexible crew
transfer tunnel on the forward end.
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THERMAL COVER
METEOROID

A BLADDER INTERFACE

FACRIC
STRUCTURE

BLADDER

I I  I I I I  , - O-RING
I,:. 'H'" '' SCREW

61.0

-I r HOSE
:.1 CLAMP

ORBITER, PAYLOAD
INTERFACE INTERFACE

. 20.5 CLOSED
71.6 OPE SEAL

CLAMP SEALING
WASHER

FIGURE 3. 1 -2. SORTIE LA B SPACER
FLEXIBLE TUNNEL
CONFIGURATION DETAIL A

FIGURE 3. 1 - 3. SORTIE LAB FLEXIBLE

TUNNEL INTERFACE CONCEPT

SDEPLOYED LENGTH
4.28 METERS

PACKAGED LENGTH (170.5 INCHES)
0.52 METERS

(20.5 INCHES)

INSIDE DIA
1.22 METERS /
(48 INCHES) .

PACKAGED DIA
1.38 METERS
(74 INCHES)

FIGURE 3. 1-4. SORTIE LAB FLEXIBLE TUNNEL ENVELOPE
DIMENSIONS
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. I -SORTIE LABINTERFACE
CABLES

PULLY

ORBITER
INTERFACE

CABLE DRUM

FIGURE 3.1-5. CABLE DIAGRAM
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FFAM
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FIGURE 3.1-6. SORTIE LAB FLEXIBLE TUNNEL SCHEMATIC
OF TUNNEL WALL MATERIALS
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FIGURE 3. 1-7. TYPICAL SECONDARY STRUCTURE
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3. 1.2.4 Cylindrical Section

The cylindrical section is 14-foot in diameter; the forward

end mates to the primary end ring and the aft end to the field splice

joint (Figure 3. 1-8). All components are 2219 Al alloy. The cylinder

is constructed of 0. 100 inch thick panels with 0. 125 inches thick by

1. 250 inches deep integrally machined stringers equally spaced on 4-

degree centers. For additional strength, (external rings) "I" beams

3. 00 inches deep are equally spaced along the longitudinal axis.

3. 1. 2. 5 Secondary Structure

The secondary structure encompasses the floor, utility

tunnels, ceiling components, and the external equipment support struc-

ture. The floor is horizontal with a removable panel through the cen-

ter. The floor's outer edges are supported by angles, secured to the

pressure wall and primary end ring. Support for the inboard edge of

the fixed floor panels consists of vertical struts extending to the pres-

sure shell. Intercostals are the only support for the center removable

section.

Typical secondary structure includes mounting hardware for

external subsystem equipment such as the N2 bottles for the ECS and the

cryogenic bottles for the electrical power subsystem (EPS). Each of

these bottles are individually truss mounted. Other equipment such as

the water sublimator, thermal storage elements, and freon control valves

are platform mounted and attached either to the bulkhead or forward skirt

structure (Figure 3. 1-7).

3. 1.2. 6 Environment Protection

The entire surface (Figure 3. 1-9) of the pressurized module is

covered with a 2. 25-inch thick insulation blanket.

This system is made up of layers of .25 mil thick crinkled

single aluminized mylar (CSAM) reflectors with the crinkles in the re-

flector acting as the spacer. The normal layer density is 70 layers to

the inch. If this system is purged the reflectors should be perforated.
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I SPLICE 
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S- - . LACING
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o on o on a • o oo a o
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FIGURE 3. 1-9. SORTIE LAB ENVIRONMENT PROTECTION
SYSTEM

Insulation blankets can be fabricated by using drop threads

and buttons or, face sheets or grids, and drop threads, or by bonding

layers together and using support pins. Blanket joints must be over-

lapped and taped or interleaved and taped.

This system is very light and can be formed to multiple

contours very well. If properly constructed the blankets have a very

high degree of strength and reliability. The most outstanding problem

area of this system is maintaining the blanket thickness (See Figures

3. 1-10 and 3.1-11). The meteroid bumper is made of 0.016 inch single

aluminum skin. Blanket attach points are utilized to attach the meteroid

bumper.

3. 1.2.7 Mobility Stability Aids

Crew mobility/stability aids are required to assist the crew-

men in performing operations and maintenance tasks. These crew aids

consist of hand-rails, foot restraints, tether attach points, etc. Loca-

tion of aids will be determined when tasks are identified. Mobility/stabil-
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ity aids must meet requirements identified in MSFC-STD-Z67. . Repre-

sentative aids are shown in Figure 3. 1-12.

LACING CORD

LACING BUTTON

STUD BUTTON

S\\\ SUPPORT PIN

( --- OUTER FACE
NET

- G -( 0. ,o-- ---- B • --

' OUTER EDGING

FIGURE 3. 1-10. INSULATION PANEL INSTALLATION

3. 1. 2.8 Pressure Hatch

Two forty-inch diameter pressure hatches are located in the

Sortie Lab; one at the forward bulkhead and crew tunnel interface and

one in the aft bulkhead. Figures 3. 1-13 and 3. 1-14 depict the hatch

concept which is hinge mounted to the bulkhead. Incorporated into the

hatch is an 8. 0-inch diameter view port, which permits viewing into

the module or observation of pallet mounted experiments, also located on

the hatch is a pressure equalization valve, used to equalize the pressure

across the hatch prior to operating.
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SUPPORT PIN

LACING BUTTON STUD BUTTON

HEAT SEAL

BRASS EYELET STUD WASHER

STUD PIN 6 DIA GROMMET
OUTER EDGING
OUTER FACE NET

INNER FACE NET
75 TYP

2.25 INNER EDGING
-_- _N.T.S.

t7- - I ± SPACER

LACING BUTTON STUD BUTTON SUPPORT PIN

FIGURE 3. 1-11. INSULATION PANEL CROSS SECTION

THIGH RAIL

48"

HAND RAIL I TOE RAIL

KNEE RAIL
HAND HOLD CONTINUOUS PIPE 18

WITH WELDED
FLANGE -l LEG RAIL RESTRAINT

TOE RAIL

ASTROGRID FLOOR AND
SHOE RESTRAINT

FIGURE 3.1-12. SORTIE LAB CREW MOBILITY/STABILITY AIDS
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STIFFENERS

HINGE (L

PRESSURE EQUALIZATION
VALVE

FIGURE 3. 1-13. PRESSURE HATCH CONFIGURATION

39.4 IN.

BULKHEAD STIFFENER

HINGE MECHANISM

FIGURE 3. 1-14. VIEW A -A, FIGURE 3. 1-13
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3. 1. 3 Environmental Control System (ECS)

The Sortie Lab ECS definition has to consider a variety of

design options to satisfy the experiment requirements, interface with

other Sortie Lab/Shuttle subsyserns, maintain a flexible design con-

cept and provide a low cost program approach. Previous sortie mission

studies such as the RAM Phase B and Sortie Lab Phase A provided good

background data for satisfying the ECS design goals. A factor which

has influenced all of these studies for the past two years is the lack of

firm Shuttle interface design data. For this reason, the best design

approach for the payload ECS has been to be as independent of the

Shuttle designs as possible. This approach provides an advantage to

both programs by minimizing sensitivity of (a) Sortie Lab program to

Shuttle design changes and (b) impacting Shuttle designs with changing

or variable experiment requirements.

The basic ECS functions required by the Sortie Lab are given

in Table 3. 1-1.

FLUID SUPPLY AND CONTROL ATMOSPHERE CONDITIONING THERMAL CONTROL

* 02/N2 Storage and Supply * Circulation . Crew Comfort

* Cabin Pressure Control * Temperature Control * Structural Heat Leak

* Airlock and Module Depressuriza- * Humidity Control e Subsystem Condition-

tion and Repressurization Control ing

* Experiment Requirements * CO2 Control * Experiment Condi-
tioning

* Water Management * Contaminant Control o Heat Rejection

* Cryogens a Particulate Control

TABLE 3. 1-1. MAJOR FUNCTIONS FOR SORTIE LAB
ENVIRONMENTAL CONTROL SYSTEM

The Shuttle will provide the following facilities for the Sortie

Lab crew:

0 Food Management

* Personal Hygiene (crew water and waste management)

* Sleeping Areas

0 Launch and Reentry Provisions
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Although the baseline ECS design that has evolved is primarily indep-

endent of Shuttle Orbiter functions, there is considerable commonality in

the design approaches. Both systems operate at 14.7 psia ambient pres-

sure, shirt sleeve crew environments, water coolant circuit in the

pressurized areas and a Freon - 21 coolant circuit in the unpressurized

areas. The basic method of heat rejection on-orbit is via space radia-

tors.

The ECS is designed to support a crew equivalent to 21 man-

days for missions of 7 days. The ECS will perform the following func-

tions:

a. Maintain cabin atmosphere temperature, pressure,

humidity and composition within specified limits.

b. Provide cooling for experiment and subsystem equip-

ment.

c. Collect and store water generated by fuel cells and

condensate removed from the cabin atmosphere.

d. Supply water as required for experiment use or heat

rejection purposes.

e. Reject waste heat to space through radiators or

sublimator during flight and to GSE during preflight

operations

The basic capabilities of the system as baselined are summariz-

ed as follows:

* Provides for up to 7 kw air cooling in cabin.

* Experiment cooling available = 4 to 5 kw. (All air

cooled if required).

* Heat rejection via radiators = 8. 5 kw (orbital average)

" Total heat rejection using radiators plus sublimator =

10 to 11 kw (orbital average)

* Normal cabin temperature = 74 + 20 F

* Normal CO 2 levels < 3mm Hg

* Normal dew point temperature = 45 + 50F
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* Cabin air filtration for 100u airborne particles

* Eliminates all overboard dumping of water (fuel cell

• generated plus condensate) for all payload sensitive

missions.

An ECS block diagram is shown in Figure 3. 1-15. The radi-

ator coolant loop rejects to space all heat generated within the Sortie

Lab cabin or external components via the space radiator. A thermal

capacitor is provided in the radiator coolant loop as a supplementary

heat sink for transient conditions when the radiator is unable to reject

the prevailing system's thermal load. The cabin coolant loop removes

all heat generated within the cabin and rejects it to the radiator cool-

ant loop via the interface heat exchanger. A sublimator is provided in

the cabin coolant loop as supplementary heat rejection for operating con-

ditions when the Sortie Lab/radiator interface heat exchanger is unable to

remove the entire cabin heat load. The cabin coolant loop receives heat

inputs from three sources: the cabin air revitalization system, the

cabin ventilation system, and the equipment ventilation system. The

cabin air revitalization system removes CO 2 and moisture produced by

crew activity plus some sensible loads. The cabin ventilation system

filters the cabin air, removes cabin air thermal loads, and supplies

conditioned air to the cabin via an air handling system. The cabin

ventilation system is the controlling agent of the cabin dry bulb temp-

erature. The equipment ventilation system provides air circulation

for the enclosed equipment racks and removes heat produced by sub-

systems and experiments. The two gas control system maintains the

Sortie Lab total pressure and partial oxygen pressure by adding 02
or N 2 as required. The N 2 supply for the two-gas controller is con-

tained in high pressure bottles and the 02 supply is stored under super

critical conditions. The super critical 02 supply and an H 2 super

critical supply is used to store reactants for the O2/H 2 fuel cell. Pro-

duct water from the fuel cell is stored by the water management sys-

tem for delivery to the sublimator upon demand.

An electromechanical schematic is given in Figure 3. 1-16.

Figure 3. 1-17 is an illustration of the internal support module configura-

tion with cabin layouts given in Figures 3. 1-18, 3. 1-19 and 3. 1-20.
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Throughout the design of the ECS, maximum use of Skylab
hardware has been made to minimize cost and development time. The
baseline designs are summarized as follows.

CABIN AIR
/EQUIPMENT REVITALIZATION

WATER
MANAGEMENT

CABIN
VENTILIATION

\ I I: I I CONTROL
S CABIN COOLANT LOOP

. INTERFACE 
H 20

RADIATOR COOLANT LOOP

GN2 02

SUPPLYSUPPLY

FIGURE 3. 1-15. ECS BLOCK DIAGRAM
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3. 1.3. 1 Radiator Design

A deployed radiator (approximately 750 ft 2 ) is the required

method of heat rejection for the non-deployed Sortie Lab concept. (The

radiator thermal coating is a white paint. ) The coolant in this circuit

is Freon-21 which is also the selected coolant for the Shuttle orbiter

program. This loop provides a closely controlled inlet temperature

(38 + 30F) at the heat exchanger which interfaces with the cabin water

coolant loop. Temperature control is maintained by a temperature

mixing valve which allows bypass of warm fluid around a cold radiator

for low thermal loads. Other major items that are conditioned by the

radiator loop are pallet cold plates, 02 heat exchangers, and fuel cell

coolant. The pump package maintains the system flow at 2000 lb/hr.

The thermal capacitor, which contains a phase change material (Tmelt=melt
40 0 F), is used to absorb heat during transient periods in which the

space radiator performance is inadequate. The ground cooling heat

exchanger is for cooling of the Freon loop (radiator by-passed) during

ground operations. This allows prelaunch cooling of the thermal capacitor

and thermal conditioning of the Sortie Lab (if required). In addition to

the thermal capacitor, a water sublimator has been baselined as a

supplemental heat rejection method for radiator loads higher than

average orbital thermal loads of 8. 5 kw (29, 200 BTU/hr). The space

processing payloads normally require heat rejection in excess of the

space radiator capabity. These payloads are sensitive to external

contamination and rather than over size a radiator for them the use of

the fuel cell generated water for thermal control was selected. The

total heat rejection capability of the radiator plus sublimator is 10 to

11 kw (Depending on the total amount of water available for thermal

control).
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3. 1. 3. 2 Structural Heat Leak

The total structural heat leak (gain or loss) to the pressurized

module has been minimized to free the thermal design from any orbital

attitude constraints. In the preliminary design a total allowable heat

leak of 500 BTU/hr was assumed through Sortie Lab elements such as

the tunnel, sidewalls, bulkheads, scientific airlock, and windows. High

performance insulation was used extensively to maintain these structural

heat leak designs.

3. 1. 3. 3 Cabin Air Temperature Control

The cabin thermal control system removes heat from the in-

terior of the Sortie Lab and rejects the heat to the radiator loop through

the liquid-to-liquid (Freon/water) interface heat exchanger. The cabin

coolant is water and is circulated through the system at 500 lb/hr. The

water flows from the pump through the interface heat exchanger, sub-

limator, condensing heat exchanger, cabin heat exchanger, equipment

heat exchanger and back to the pump. The water is cooled in the inter-

face heat exchanger and/or sublimator to 40 to 45 0 F. Two condensing

exchangers are connected in parallel and remove moisture from the

cabin atmosphere as required to maintain the desired cabin humidity.

One condensing heat exchanger is required for a crew of two. Both

units are required for a crew of three to four. A fan in each condens-

ing heat exchanger circuit provides 45 CFM air flow across the heat

exchanger. For a nominal two-man crew, only one fan is operating.

For a four-man crew, both fans are operating. This design concept

has operating flexibility to accommodate variable crew sizes and pro-

vides the low humidity levels required for optimum cabin air tempera-

ture control. Condensate from the heat exchangers will be stored for

the duration of the 7-day mission. The maximum quantity of condensate

to be stored is 124 pounds.
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The cabin heat exchanger is located in the cabin ventilation

ducting and maintains the air temperature control for crew comfort.

A total air flow of 540 CFM across the heat exchanger is provided by

the cabin heat exchanger fan. A step flow control valve controls coolant

flow through the cabin heat exchanger as required to maintain cabin

air temperature at the set-point. The maximum heat removal capa-

bility of the cabin air circuit for crew comfort is 10, 000 BTU/hr

( 3 kw) at an ambient temperature of 74 + ZoF. This includes the

heat removal capacity of the condensing heat exchangers. The allowed

split in subsystem and experiment thermal loads for this circuit are

still to be determined.

3. 1.3.4 Atmosphere Supply and Control

The atmosphere supply and control design maintains the pres-

surized module at 14.7 psia, supplies gaseous oxygen and nitrogen for

repressurization of the scientific airlock, supplies oxygen for metabolic

consumption. The design also includes vent and relief components which

permit the pressurized module to be vented to the outside environment

and prevent its structure from being exposed to excessive internal or

external pressure differentials.. Also the nitrogen gas supply is used for

pressurization of the accumulators in the coolant circuits and the water

storage tanks. The 7-day mission atmosphere consumables carried by

the Sortie Lab ECS are 54 pounds of nitrogen. The ECS oxygen require-

ments, are integrated with the fuel cell cryogenic tankage, and constitute

a 5 to 10 percent increase above the oxygen reactant required for power

generation.

The oxygen gas for ECS is supplied from the fuel cell cryo-

genic tankage at 900 psia and -2970F. Through an interface with the

radiator loop the oxygen is heated to a minimum of -400F and the pres-

sure is then reduced to 120 psia by a pressure regulator. Gaseous

nitrogen is stored in a high pressure bottle (3000 psia). Nitrogen gas

pressure is reduced to 900 psia prior to entering the cabin and is fur-

ther reduced to 160 psia by a pressure regulator. Redundant pressure

regulators are provided in both the oxygen and nitrogen supply lines.
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The shutoff valve immediately upstream of the appropriate regulator is

closed when a regulator failure is detected.

The major portion of the two gas control system consists of

the pressure sensors, controllers, the mechanical components used

to control the flow and pressure of the oxygen and nitrogen. Normally,

the system supplies nitrogen to the cabin atmosphere as required to

maintain the total pressure in the module at the desired level. When

the oxygen partial pressure sensing system determines that the oxygen

partial pressure is below the desired value, the supply of nitrogen is

stopped and oxygen is supplied to the cabin as required to maintain the

total pressure in the cabin at the desired level. When the oxygen partial

pressure reaches the desired value, the oxygen is shut off and nitrogen

is again supplied to the cabin. A source of reference gas with associ-

ated control components is provided for inflight calibration of the oxygen

partial pressure sensors.

3. 1. 3.5 CO 2 Removal

The CO 2 removal system consists of three lithium hydroxide

(LiOH) canisters connected in parallel and integrated with the humidity

control system (see Figure 3. 1-21).

TO CABIN AIR DISTRIBUTION

CABIN
COLLANT

CHX LIOH 101 10 CHX FLOW

s3] FAN 45 CFM

FLOW DIVERTER VALVE

MANUAL SHUTOFF VALVE 10 CF 55 CFM

S CHECK VALVE

FROM CABIN

FIGURE 3, 1-21. DESIGN CONCEPT FOR CO2 REMOVAL/HUMIDITY
CONTROL
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For a nominal two-man crew, only one fan is operating. This

fan provides air flow through both the condensing heat exchanger (45

CFM) and the LiOH canister (10 CFM). For a four-man crew, both

fans are operating. Each condensing heat exchanger has 45 CFM air

flow and the total air flow through the LiOH canister is 20 CFM. As

each LiOH canister is expended the crew diverts the air flow to a fresh

canister.

3. i1. 3.6 Trace Gas Contaminant Control

A study of the potential trace gases in Sortie Lab and appro-

priate control methods was begun during Phase B studies but has not

developed to the point where trace gas removal systems can be incor-

porated into a Phase B schematic. Additional studies and testing to

determine the magnitude of the trace contaminant problem will be re-

quired before this can be done.

Current information indicates that the generation of trace con-

taminants can be a problem for Sortie Lab (depending on assumed genera-

tion rates and mission duration). Also, the Sortie Lab contaminants could

in turn contaminate the Shuttle orbiter cabin if the two atmospheres are

exchanged. This is due to the different design philosophies of integrat-

ing equipment into the respective cabin design. In the Shuttle, the Skylab

type materials control program is applied to all equipment located in

the crew compartment. The Shuttle avionic bays are located outside

of the Shuttle cabin area and are designed to incorporate all equipment

not compatible with the Skylab type materials control. The bays are

designed to leak overboard at a controlled rate and are maintained at a

constant pressure differential (0.4 psid) below the cabin pressure to

preclude avionics generated trace contaminants from migrating into

the Shuttle cabin. Sortie Lab currently has no such provision for

controlled overboard leakage of equipment racks and as a consequence

heating expansion and cooling contraction of air circulating inside the

racks will cause pumping of air between the equipment racks and the

Sortie Lab cabin through any available leak point. This could allow any

contaminants generated internal to the racks to contaminate the Sortie

Lab cabin. Reliable pressure sealing of the racks to prevent air ex-
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changes and the required materials control necessary to eliminate a

contaminant source within the rack is probably unacceptable to many

experiment payloads. This makes some form of contaminant control

necessary for Sortie Lab.

Preliminary analyses of Sortie Lab contaminant control con-

cepts show a catalytic oxidizer system could control 64 out of 74 con-

taminants within safe levels with water adsorption and/or chemical

adsorption to control the remaining 10 contaminants. Water adsorption

will occur within the condensing heat exchangers during normal conden-

sate removal operations. Chemical adsorption could be conducted with
lithium hydroxide and copper sulfate layers incorporated into the Sortie
Lab particulate filters. The feasibility of these proposed control methods
can be verified only by additional studies and testing.

3. 1.4 Electrical Power

The major elements of the electrical power subsystem (EPS)
include fuel cell, battery kits, water storage, reactants and tankage.
To meet pallet only mission power requirements studied and to provide
a common sub-module interface for all missions, the fuel cell was placed
on the pallet. However, later structural studies deleted the pallet on
selected missions. This resulted in a proposed relocation of the fuel
cell to the forward bulkhead skirt of the support module. The power
distribution system is to be routed to the support module providing
power distributors for distributing electrical power to the subsystems
hardware. Section 3. 3. 4 provides an overall description of the EPS.

3. 1. 5 Habitability

The Shuttle Orbiter habitability system will provide accom-
modations for the Sortie Lab personnel during the pre-launch, orbital
flight and horizontal flight phases. Accommodations for their comfort,
convenience, and well-being as a function of mission duration will be
provided in a compartment immediately adjacent to and connected
with the flight deck. The Shuttle Orbiter habitability system procedures
and operations should be "incidental" with minimum expenditure of
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of time and effort. The habitability elements considered are: (a,) Faci-

lities - personal hygiene and galley (food, water and housekeeping),

(b) Furnishings - seats, sleeping provisions, garments and personal

gear, living accommodations, off-duty equipment, mobility aids and

restraints, and passageways, and (c) Environmental Requirements -

acoustics, temperature, lighting, air flow and interior design.

3. 1.6 Communications

All Sortie Lab communications to and from the earth and

other vehicles are routed through the Shuttle Orbiter Communication

subsystems. Any requirements exceeding the capabilities provided by

the Orbiter (none defined at this time) will be handled by unique add-on

equipment on the Sortie Lab. The typical Orbiter interfaces with the

ground are shown in Figure 3.1-22.

TORSS

ORBITER/SORTrE LAB

-K 

-BA N D

/-BAND

t!95? --- k

STDN GSFC TDRS GROUND
STATION

GSFC - Goddard Space Flight Center
STDN - Space Tracking and Data Network
TDRS - Tracking and Data Relay Satellite

FIGURE 3. 1-22. COMMUNICATIONS CONCEPT
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The baseline Sortie Lab concept assumes that the Orbter

interfaces with both the TDRS and the STDN. Thebasic Sortie Lab

requirements are to be met using the Orbiter/TDRS link, with the

Orbiter/STDN link providing backup capability. The TDRS provides

the high data rate capability to meet Sortie Lab requirements and

allows nearly continuous real-time transmission capability. It should

be noted that an experiment dedicated communications capability is

being considered to avoid conflicts with Orbiter and Sortie Lab sub-

system requirements.

The Orbiter provides both downlink (Orbiter to ground) and

uplink (ground to Orbiter) capability thru the TDRS or STDN. The
Sortie Lab downlink capability through the Orbiter are:

* High Data Rate - digital data at 50 mbps or a 5 MHz
Analog/Video data link, both through the Ku-Band.

* Voice - a duplex, digital voice link through Ku-or

S-Band

* Telemetry - a 25 kbps telemetry downlink capability

through the Ku- or S-Band.

The uplink capabilities provided are:

* Command - an 8 kbps command link through Ku or S-

Band

* Voice - A duplex, digital voice link through Ku or S-

Band

* Video - TBD capability through Ku-Band

In addition, some limited capability is provided through
the Orbiter to STDN link and internal Orbiter/Sortie Lab voice com-
munications is available with the onboard intercom system.

For Sortie Lab analog data transmitted by the Orbiter, the
Sortie Lab shall provide communication and subcarrier oscillators
compatible with Orbiter transmitter circuitry. For digital data, the
payload shall provide the required coding for compatibility with the
Orbiter transmitter.
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3. 1. 7 Data Management and Onboard Checkout Subrsystems

The data management subsystem (DMS)., 1-n'conjunction with

the controls and displays, performs the control, monitor, and checkout

of all subsystems and experiments. The DMS, as illustrated in Figure

3. 1- 23, includes the computer and data acquisition and distribution

(DA&D) subsystems.

A 32-bit, floating point, micro-programmable, central pro-

cessor unit has been baselined for the computer subsystem. Software

implementation features a modular structure under control of an execu-

tive. A higher-order- language selected from those under current

development is proposed to reduce software development and verifica-

tion time.

The DMS provides for two-way data transmission on two

twisted, shielded pair cables. The cable used for commands and data

transfers to the digital interface unit (DIU) is designated the supervisory

bus while the cable used for data transfers from the DIU is called the

reply bus. The speed of each bus is two mega bits.

The DIU provides standard interface for all Sortie Lab sub-

systems and experiments and is made up of the following:

* Up to 128 Discrete Inputs (DI's)

* Up to 128 Discrete Outputs (DO's)

* Up to 128 Analog Inputs (AI's)

* Up to 4 Analog Outputs (AO's)

* Up to 8 Record In/Record Out Channels

(Digital Data)

Data bus control is by the computer subsystem to accommo-

date varying data acquisition and distribution rates. The Input/Output

Processor (IOP) controls all transfers with the data bus.

The computer interface unit (CIU) provides parallel-to-serial

conversion on data transferred to the bus and serial-to-parallel con-

version on data received from the bus. Additionally, the CIU checks for

bus errors and generates timing for the bus.

High rate experiment data (50MBPS) is routed through the

data exchange control unit (DECU) where it is switched to recorders on
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the Sortie Lab or routed to the orbiter for transmission to the ground.

Recorders presently selected have a capability for up to 50 MBPS in-

put with a 30 minute record time per 14 inch reel. However, the pre-

sent baseline is to use the orbiter/TDRS link which provides a near

continuous return link to earth.

A digital data path exists between the Sortie Lab via a buffer

and the orbiter. This interface is used for navigation updates.

Table 3. 1-2 is an estimate of the number of instructions,

main memory, auxiliary memory, and equivalent operations per sec

required for the Sortie Lab subsystems. Instructions are assumed to

be 16 bits while data are assumed to be 32 bits; thus one data storage

location in memory is equivalent to two instructions. The estimates

in this table do not include operations or control of the data bus. This

may take between 150 x 103 to 200 x 103 equivalent operations per
second.

Operations
MEMORY Per Sec

INSTR. MAIN AUX.

COMPUTER SYSTEM 2,370 1,812 586 1,040
POINTING ATTITUDE AND CONTROL 9,370 5,750 - - 133,820
CONTROL AND DISPLAY 4,868 2,576 4,770 5,480
DATA ACQ. AND DIST. 3,546 899 1,000 3,000 (1)
ELECT. POWER AND DIST. 154 168 - - - -
ENVIRONMENTAL CONTROL SYSTEM 354 188 - -
ONBOARD CHECKOUT 6,600 700 26,044 (2 )  402 (3)
STRUCT. AND MECH. 120 100 - - - -

SUBTOTAL: 27,382 12,193 32,400 143,742

CONTINGENCY (50%) 13,691 6,097 16,200 35,935

TOTAL (4 )  
41,073 18,290 48,600 179,677

(1) Does not include Data Bus Control (estimated to be 150 - 200K OPS)
(2) Used only during ground checkout
(3) Flight Phase only
(4) No allowances made for use of higher order languages

TABLE 3. 1-2. DMS COMPUTER SIZING
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Table 3. 1-3 gives an estimate of the measurements which

will be required in the subsystem. From this table, the data bus load

due to the subsystems were derived and are shown in Table 3. 1-4.

Analog measurements are assumed to be 10 bits in length, digital words

32 bits long, and each discrete word a single bit. The total traffic on

the bus in flight due to the subsystems is less than 80 x 103 BPS. This

does not, however, include supervisory or bus control data which flows

on the other 2 MBPS bus. The above estimate indicates that only 5 to

10 percent of the full capability of the bus is being used by the subsystems;

the remainder would be available for the experiments.

INPUTS* OUTPUTS*

ANALOG DIGITAL DISCRETE ANALOG DIGITAL DISCRETE

POINTING ATTITUDE
& CONTROL 300 100 - - 260 3 - -

CONTROL & DISPLAY 54 - - 20 - - 921 - -

MEASUREMENTS
(FLIGHT ONLY) 340 - - - - - - 1,003 339

ONBOARD CHECKOUT
(FLIGHT & GND) 60 - - 60 - - 60 60

ONBOARD CHECKOUT
(GND ONLY) 1,056 - - 1,055 - - 1,819 1,055

COMMANDS - 2 - - - - - - 2

TOTAL FLIGHT 754 102 419 260 1,987 421

TOTAL GND CO 1,410 102 1,075 260 2,743 1,075

* Expressed in data words per sec

TABLE 3. 1-3. SUBSYSTEM MEASUREMENTS

The onboard checkout subsystem (OCS) is shown in Figure

3. 1-24 and is integrated into and utilizes all the data management sys-

tem resources such as memory, data bus, and control and displays.

Some special built-in test circuits and equipment may have to be pro-

vided in the subsystems and experiments. In addition, it may be de-

sirable to provide a special recorder for trend and fault analysis. The

OCS is used both during prelaunch and in flight. It provides stimuli to
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FLIGHT

DATA WORDS NUMBER BITS TOTAL BITS

ANALOG 1,014 10 10,140

DIGITAL 2,089 32 66,578

DISCRETE 840 1 840

TOTAL NUMBER OF DATA BITS 77,550

GROUND CHECKOUT

DATA WORDS NUMBER BITS TOTAL BITS

ANALOG 1,670 10 16,700

DIGITAL 2,845 32 91,040

DISCRETE 2,150 1 .' 2,150

TOTAL NUMBER OF DATA BITS 110,890

TABLE 3. 1-4. DATA BUS SUBSYSTEM LOADING

FAULT/TREND
RECORDER

ALL PAYLOAD
SYSTEMS

TUS/
AUX. MEMORY TEST
STORAGE _SORTIE LAB DATA BUS S ORS

ITEST BUILT-IN
IPROGRAM TEST

MONITOR VIDEO
CRT DISPLAY

DEDICATED KEYBOARD
C&D CONTROL

FIGURE 3. 1-24. ONBOARD CHECKOUT
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activate the subsystem for checkout and then monitors, checks and displays

the test data and results. Testing may either be automated or controlled

by an operator at the control and display console. For prelaunch check-

out, the present philosophy is to provide as much autonomy in the Sortie

Lab as possible.

3. 1. 8 Controls and Display (C&D) Subsystem

The support nmodule C&D subsystem provides onboard control

and display capability for Sortie Lab subsystems and experiments, and

it provides the central control of the subsystems and experiments during

on-orbit operations. Some additional pre-entry C&D capability is located

in the Orbiter for monitoring and operation of the Sortie Lab prior to

crew entry into the Sortie Lab habitable area.

The support module C&D console provides the capability for

independent operation by two Sortie Lab crewmen simultaneously. The

support module C&D console is shown in Figure 3. 1-25. The six-foot

C&D console was baselined for a ten-foot SM. That console length ex -

ceeds the 5-foot support module baseline that was adopted later. The same

general configuration but a five foot length would be employed in the 5 -foot

support module. This console interfaces with the Sortie Lab computer,

other subsystems, and experiments via the data management subsysteini

data bus. Limited hardwire connections are provided for certain critical

starting functions (such as those which must function when the DMS is

not fully activated) and for special experiment signals which do not readily

lend themselves to data bus transmission.

The primary components in the C&D subsystem are the multi-

function displays and hand controllers. Two display systems are provid-

ed and each includes two cathode ray tube (CRT) display units, one alpha-

numeric keyboard and one multifunction display symbol generator. Each

multifunction display provides the capability for independent display of

computer generated alphanumeric and graphics data as well as video in-

formation. Two 3-axis hand controllers are provided for pointing TV

cameras, telescopes, cameras, celestial sensors and trackers, SEPB

slew commands, and for vehicle attitude positioning by inputting rate
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72"
1. VIDEO SWITCHING UNIT
2. COMPUTER CONTROLS
3. ELECTRICAL POWER SUBSYSTEM DEDICATED C&D
4. CONSOLE CIRCUIT BREAKERS
5. ADVISORY PANEL
6. CRT DISPLAY INDICATOR UNIT
7. EXPERIMENT DEDICATED C&D 3
8. CAUTION & WARNING
9. TBDOO

10. DATA ACQUISITION DEDICATED C&D '
11. ENVIRONMENT CONTROL SUBSYSTEM DEDICATED C&D 1 5
12. STABILITY & ATTITUDE CONTROL SUBSYSTEM

DEDICATED C&D 17
13. ALPHANUMERIC KEYBOARD 19
14. HAND CONTROLLER I 11
15. TAPE RECORDERS CONTROLS
16. MICROFILM TO VIDEO CONVERTER CONTROLS 1
17. AUDIO UNIT 12
18. CCTV CONTROLS
19. VIDEO SWITCHING CONTROLS 15
20. TIME DISPLAY UNIT
21. MULTIFUNCTION DISPLAY SYMBOL GENERATOR
22. MICROFILM TO VIDEO CONVERTER

27"
21 22 22 21

A-A

FIGURE 3. 1-25. SUPPORT MODULE C&D CONSOLE

commands to the CMG subsystem.

General purpose display services are also provided in the

baseline design. Advisory display and caution and warning (C&W) panels

are provided for low priority malfunction queues and for critical sub-

system and experiment malfunctions. Time displays and an intercom

system are provided for time references and internal communications.

Microfilm to video converters are provided to convert cassette micro-
film for TV display and video switching units are provided for closed

circuit TV (CCTV), experiment video and microfilm output switching.

Additonal console space is provided for dedicated subsystem

and experiment C&D. This provides the space for mounting unique

experiment C&D and for selected critical and initial activation of sub-

system and experiment functions which are hardwired to the C&D.
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3. 1.9 Pointing and Attitude Control Subsystem (PACS)

The major elements of the PACS are to be located on the pallet.

These elements include the standard experiment pointing base (SEPB),

and the advanced double gimballed CMG's. An overall description of

PACS is provided in Section 3. 3. 10.

3. 1. 10 Mass Properties

The estimated mass properties (weight, center of gravity,
and moment of inertia) can be found in Section 2.6. Mass prooerties

shown include all subsystems required to support indicated lengths of

EM(s).

The support module when utilized will require a flex tunnel.

The flexible tunnel, 2 to 14 feet, weights 815 pounds. For missions re-

quiring longer tunnels to meet orbiter longitudinal center of gravity con-

straints, weight is added at the rate of 50 pounds per foot.

3. 1. 11 User Provisions

Table 3. 1-5 describes the provisions and capabilities in the

Sortie Lab avionic subsystems for the performance and support of experi-

ments. Other Sortie Lab user provisions may be found in Table 2.5-1.

3. 2 Experiment Module Definition

3. 2. 1 Configuration

The Experiment Module (see Figure 3. 2-1) primary structure

consists of a 14-foot diameter constant section cylinder with modular

lengths (6 to 16 feet). A 32-degree conical bulkhead is attached at the

rear of the experiment module. The conical section at the aft end is

removable to permit access and facilitate experiment installation and

removal. This bulkhead is penetrated by viewports, subsystem control
and data circuits lines and plumbing for thermal control of pallet mounted

equipment.
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PARAMETER TOTAL CAPABILITY NET CAPABILITY
FOR EXPERIMENTS NOTES

1. Electrical Power 7.0 KW, 650 KWH 4.1 KW, 293 KWH a One to four peaking kits
(500-AH batteries) may
be added, as needed.

* Regulated and unregulated
28vdc, and 115/208 vac
Hz power provided.

2. Computer Processing Memory - 32 K words Memory - 13 K words

3. Controls & Displays Redundant multifunctioning Normally, one multi- a C&W panel, intercom,
displays and keyboards plus functioning display and closed circuit TV, and
dedicated panels. keyboard, plus dedicated microfilm viewers

panels provided.

4. Communications Return Link Return Link a Shuttle Provided; using
Transmission - Digital 50 mbps - Digital up to 50 mbps Ku through TDR'S and
Capicity - Analog/video 5 MHz S-Band to STDN

- Voice - - - Analog/video to 5 MHz
- Telemetry
Forward Link Telemetry TBD*b Forward Link
- Command 8 kbps Forward Link
- Voice - -
- Video TBD - Command TBD

- Video TBD

5. Pointing and Attitude
Control

- Pointing (SEPB) 1 rc 1 sec

- Stability 10- g 10 -5g

6. Data Acquisition

Rate (max) 50 mbps 50 mbps * Tape recorders; redundant
units provide for continu-

Stowage (reels) 40 reels (digital & video) 40 reels (digital & video) ous recording.

TABrLE 3. 1-5. AVIONIC SYSTEM SUPPORT CAPABILITIES



AFT
BULKHEAD

EXPERIMENT
MODULE

EXPERIMENT
MODULE

6.0'

FIGURE 3.2-1. SORTIE LAB EXPERIMENT MODULE

Experiment equipment and payload-integration equipment are

located in the experiment module. Internal mounting of this equipment

is by a removable rack attached to the floor, pressure wall, and over-

head structure. Temperature control for the equipment in the consoles

and racks is integrated into the thermal control subsystem, and is

accomplished by air cooling.

The payload-peculiar scientific airlock which is a significant

addition to the basic structure is depicted in Figure 3. 2-2. For a select

group of payloads it is installed in the sidewall of the experiment mod-

ule and can be separately pressurized and operated. Cover plates

are provided for the unused opening when the airlock is not required.

The airlock is configured with the driving requirements being the length

of booms and the experiment package envelope. Figure 3. 2-3 shows an

experiment deployment concept, utilizing a scissors mechanism for the

boom structure, that permits experiment deployment for a length of 30

feet.

3. 2. 2 Structure

The experiment module is similar to the support module as it

has essentially the same design, construction and structural character-

istics (Reference Section 3. 1. 2). The experiment module sizes are 6

feet, 10 feet, and 16 feet. Whereas the support module requires a forward

skirt the experiment module has a structural interface with the pallet

adapter.
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The aft conical bulkhead has an integrally machined frame

designed to accommodate viewing ports.

The six-foot module's cylindrical sidewall segment is modified

to include structural accommodation for the scientific airlock.

TYPICAL
(3 PLACES)

BALL SCREW

LATCHING
ACTUATOR
(9 REQUIRED). GEARMOTOR

FIGURE 3.2-2. SORTIE LAB SCIENTIFIC AIRLOCK

3. 2. 3 Environmental Control System (ECS)

Although Section 3. 1. 3 provi as some discussion of experi-

ment accommodations, specific accrmmodations are reviewed in this

section.

The ECS is designed for maximum flexibility of experiment

equipment with available thermal control. The rationale of the study
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EXPERIMENT
PLATFORM
(EXTENDS
30' - 40')

SCISSOR
MECHANISM
(3 REQUIRED)

GEAR-
MOTOR

FIGURE 3.2-3. SORTIE LAB SCIENTIFIC AIRLOCK
EXPERIMENT DEPLOYMENT CONCEPT

has been to have all equipment accommodated by the electrical power

subsystem also accommodated with heat rejection capability. The

resources planned provide the following capability and characteristics

for experiments:

THERMAL CONTROL ALLOWABLE EXPERIMENT

RESOURCE AVAILABLE THERMAL LOADS

Maximum Heat Rejection 4 to 5 kw
(Average per orbit)

Air Cooling

- Cabin Circuit (70+100F) 1 kw

- Racks ( 7 5 to 1050F) 3 to 4 kw

Cold Plates (45 to 860F) 4 to 5 kw
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The cabin thermal design is oriented toward primarily air

cooling of equipment rather than cold plates. If requirements are

identified, cold plates can be integrated into the cabin but the total heat

rejection available to experiments (air cooled plus cold plates) is 4 to

5 kw. The latest experiment resource allocation studies indicate experi-

ment power will be reduced to 3.4 kwe average and the subsystem power

is 3. 6 kwe average. Therefore, the total heat rejection capability of the

cabin is still adequate ( ~ 7 kw) but the split in available resources for

subsystems and experiments is about equal.

Until better information is obtained, the following design

approach has been taken for thermal air conditioning of additional labora-

tory equipment. An air distribution and thermal conditioning circuit

specifically for equipment racks (separate from the crew comfort cir-

cuit) will be designed for handling up to 14, 000 BTU/hr ( - 4 kw) air

cooling loads. The heat exchanger selected for this circuit is the same

type as the cabin heat exchanger. The maximum air flow across the

heat exchanger is 700 CFM. The air and water coolant temperatures

in this circuit are a function of cabin and rack thermal loads. The

maximum return air temperature from the racks is 105 0 F. The cabin

circuit uses the floor as a return duct, whereas, the equipment circuit

has return ducts. The baseline design tends to isolate contaminants

that might occur due to off-gassing from electronic equipment (parti-

cularly odors).

Experimenters must provide their own cooling system for

required temperatures below that provided by the radiator (400F).

An illustration of the internal experiment module configuration

is presented in Figure 3. 2-4.

3.2.4 Electrical Power

For an overall description of the EPS see Section 3. 3. 4.

3. 2. 5 Habitability

Sortie Lab habitability accommodations are discussed in

Section 3. 1.5.
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FIGURE 3.T2-4. INTERNAL ECS CONFIGURATION
(EXPERIMENT MODULE)

3. 2. 6 Communications

Sortie Lab communications are discussed in detail in

Section 3. 1.6.

3. 2. 7 Data Management and Onboard Checkout Subsystems

Data management and onboard checkout subsystem information

is outlined in Section 3. 1. 7.

3. 2. 8 Controls and Display (C&D) Subsystem

The support module C&D subsystem provides onboard control

and display capability for Sortie Lab experiments, and it provides the

central control of the experiments during on-orbit operations. Since

the C&D console is located in the support module, the C&D subsystem

is outlined in Section 3. 1. 8.

3.2.9 Pointing and Attitude Control Subsystem (PACS)

An overall description of PACS is provided in Section 3. 3. 10.
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3. 2. 10 Mass Properties

The estimated mass properties (weight, center of gravity and

moment of inertia) can be found in Section 2.6. For module mass

properties accounting purposes, the EM(s) and aft bulkhead consist of

structure only. The following are those items on or in the EM(s) and/

or aft bulkhead, which are weight charged to the SM.

6'EM + BHD 10'EM + BHD 16'EM + BHD

Thermal coating
and insulation 178 lb 263 lb 388 lb

ECS ducting 112 lb 185 lb 296 lb

Miscellaneous
supports 122 lb 203 lb 325 lb

412 lb 651 lb 1009 lb

3. 2. 11 User Provisions

The provisions.and capabilities of Sortie Lab avionic subsystems

are described in Section 3. 1. 11. Other Sortie Lab user provisions may

be found in Table 2. 5-1.

3. 3 Pallet Definition

Some experiment payloads require large areas for mounting

and operations. Pallet lengths can be 10, 15, 20, 25 feet, etc., the
first section is always 10 ft. with increments of 5 or 10 ft.

3. 3. 1 Configuration

The Sortie Lab pallet shown in Figure 3. 3-1 has the design
capability to interface with the pressurized module or mate to the Orbiter.
The design is driven by structural rigidity requirements, payload size,
and viewing/exposure requirements. It also provides utility services
distribution to external payload experiments. Pallet characteristics for
a typical payload are presented in Table 3. 3-1.
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172.00 t 90.00

312.00
EXTERNAL RING LONGERON

93.00

FIGURE 3. 3-1. SHELL-TYPE PALLET STRUCTURE

Payloads having fine pointing requirements are satisfied by
the use of add-on items such as the standard pointing base or large
CMG's. This capability plus the mounting flexibility provided by the
sheet/stringer construction enables the pallet to accommodate payloads
with wide variations in mounting requirements.

The forward end of the 168 inch diameter pallet interfaces
directly to a 33 inch long pallet adapter which serves as the direct
attachment link to the pressurized module primary structure. The
pallet adapter is necessary in order to accommodate pallet segments
because of the protuberance of the aft bulkhead into the pallet floor
area. The pallet adapter will not be required for the pallet only mode.
The pallet adapter as well as the pallet structure is a shell of sheet/
stringer construction and uses aluminum alloys with riveted joints.

Feedthroughs from the pressurized module aft conical bulkhead
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provide umbilical connects for direct cabling power, ECS commands

and data to experiment apparatus. Electrical power, communications,

and data management, and thermal control for the payload will be pro-

vided by the pressurized module. Support equipment on the pallet will be

data terminal components, freon fluid lines and cold plates. See Sections

3. 1.4 and 3. 3. 4.

PARAMETER CONFIGURATION

OVERALL LENGTH 274.0 in. (22.8 ft)

NOMINAL WIDTH 168.0 in (14.0 ft.)

MAX HEIGHT 87.0 in (7.2 ft.)

FLOOR-NOMINAL SIZE; GROSS AREA 142.0 in. x 240.0 in.; 34,080 in2

SUPPORT FITTINGS 1

TYPE OF CONSTRUCTION SHEET/STRINGER HALF SHELL

MATERIAL ALUMINUM ALLOY

ELECTRICAL POWER 28 VDC; 115 VAC, 400 HZ

COMMUNICATIONS

CONTROL AND MONITOR HARD LINE TO SORTIE LAB

TV CAMERAS 2

THERMAL CONTROL FLUID LINES PLUMBED TO SORTIE

DATA MANAGEMENT HARD LINE TO SORTIE LAB

STABILIZATION & ATTITUDE CONTROL

CMG PROVISIONS FOR 3

GIMBALS PROVISIONS FOR 1

WEIGHT 2533 LBS

TABLE 3. 3-1. PALLET CHARACTERISTICS FOR EXPERIMENT
EO -4

3. 3. 2 Structure

The Sortie Lab pallet structure, Figure 3. 3-2, is essentially

a half cylinder made from sheet metal. It is 108 inches in diameter and

has modular segments 60 and 120 inches long. It has a large frame at

the aft end, which is used to mount the pallet/orbiter attach fittings.

The forward end of the pallet has a bolt ring flange (Figure 3. 3-3), that

mates with a similar ring on the pressurized module with high strength
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- -f , w- - Z414

- Z400

INTERNAL STRINGERS

EXTERNAL RINGS

FIGURE 3. 3-2. PALLET-END VIEW

PALLET
3STRUCTURE

CONICAL &
CLOSURE BULKHEADS

MODULE
PRIMARY RING

PALLET
MODULE ATTACH RING
STRUCTURE

FIGURE 3.3-3. SORTIE LAB PRESSURIZED MODULE TO
PALLET MECHANICAL INTERFACE
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bolts. The forward ring may also be used to mount pallet/orbiter attach

fittings for the pallet only mode.

A structural floor runs the length of the pallet. Two major

longerons are attached to the shell structure edge at the centerline to

react the large bending loads. A machined fitting is attached to these

longerons at the pressurized module's end to spread the load into the

module's structure. The floor is supported at the shell by other.longe-

rons and a series of floor truss members.

The shell structure is a typical semi-monocoque structure

with external stringers and internal rings. Attached to the floor longe-

ron are I-beam sections that span the cylindrical shell and support

the floor.

The floor of the pallet is a honeycomb structure designed to

accept cutouts or to which machined plates can be attached. The

machined plates are used for equipment mounts.

The pallet structure uses aluminum alloys and has a riveted

construction.

3. 3. 3 Environmental Control System (ECS)

Life support/atmospheric conditioning provisions are not

required for the Sortie Lab pallet. Thermal control for the pallet is

provided by the pressurized module. Pallet cold plates are conditioned

by the pressurized module's radiator loop.

Further work is needed to define the Freon flow arrangement

to the pallet and tradeoff a pallet interface heat exchanger between an

independent pallet loop and the cabin water loop. In this regard it

appears a single fluid loop between the cabin and radiator would greatly

enhance system simplicity and flexibility. It is anticipated that much
of the equipment on the pallet can be passively thermally controlled.

Passive thermal control consists of insulation, proper optical coatings
and heaters. Final design must await more detailed experiment defini-
tion. In any case one kilowatt cold plate cooling is available to pallet
mounted experiment equipment.
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3. 3.4 Electrical Power

The electrical power subsystem (EPS) as illustrated in Fig-

ure 3. 3-4 consists of a single Shuttle-type, 7. kw average, 10 kw peak

fuel cell with silver oxide-zinc (AgZn) batteries for peak power purposes.

These sources feed a centralized control and conditioning system with

local distributors in each module. EPS distribution is achieved with

standardized modules, which utilize a data bus interface and/or hard-
wire for their control and monitoring. A system utilizing two pallet

mounted fuel cells rather than replaceable peaking batteries is an

alternative under consideration for use in one of the Sortie flight

module s.

The 7 kw fuel cell will meet all load requirements, except

for seven of the presently defined payloads. The allocation of electrical

power for the baseline system is shown in Table 3. 3-2.

Peak Average Total
Power Power Energy

Experiments 6. 0 kw 4. 1 kw 293 kwh

Subsystems 4. 0 kw 2. 9 kw 357 kwh

Basic Size 10. 0 kw 7.0 kw 650 kwh

TABLE 3.3-2. ELECTRICAL POWER REQUIREMENTS

One of four peaking kits (500 AH Batteries) are required to
meet all payload requirements. Electrical power available from the
orbiter is 1 kw average power during peak orbiter usage and 3 kw
average during normal orbiter usage with a total of 50 kwh available.
This electrical power is allocated for use during transport to and from
orbit and for a back-up energy source during orbital operations.

It is proposed to mount the fuel cell, battery kits, water
storage, reactants and tankage together on the pallet. This arrange-
ment will facilitate test and checkout of the power supply as a unit,
minimize fluid interfaces, and provide the option to use the fuel cell

3-52



ORBITER SUPPORT MODULE EXPERIMENT MODULE PALLETDMS DMS

C&WC&D C&W C&D C&WI THERMALPANEL PANEL I PANEL PANEL I CONTROL

S ARWIRE C&W FUEL REACTANT
C&W CELL CONTROL

C&W
WATER
STORAGE H

I & DUMP

C&W

28 VDC & Ag Zn BATTERY
HARDWIRE BATTERY CHARGER

I CONTROL L _J
HARDWIRE CONTROL

DC BUS28 VDC
DC BUS co _

IDMS CENTRALIZED
CONDITIONING
& CONTROL

128 VDC I

REGULATD 28

SUPPORT MODULE EXPERIMENT MODULE PALLET MODULE
DMS - POWER DISTRIBUTION DMS POWER DISTRIBUTION IDMS POWER DISTRIBUTION

& CONTROL & CONTROL & CONTROL

LOADS LOADS LOADS
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pallet for pallet only missions. Weight and volume of the baseline

system is 3150 pounds, including reactants, and 107 ft 3 , respectively.

3. 3. 5 Communications

Section 3. 1. 6 provides a detailed discussion of Sortie Lab

Communications.

3. 3. 6 Data Management and Onboard Checkout Subsystems

Data management and onboard checkout sybsysteris infor-

mation is outlined in Section 3. 1. 7.

3. 3. 7 Controls and Display (C&D Subsystem)

The support module C&D subsystem provides onboard con-

trol and display capability for Sortie Lab experiments, and it pro-vides

the central control of the experiments during on-orbit operations.

There will be provisions for visual monitoring of operations and in-

spection of equipment mounted on the pallet.

Since the C&D console is located in the support module, the

C&D subsystem is outlined ia Section 3. 1. 8.

3. 3. 8 Mass Properties

Pallet lengths can be 10, 15, 20, 25 feet, etc., i.e., the
first section is always 10 feet with increments of 5 or 10 feet.

The estimated mass properties (weight, center of gravity,

and moment of inertia) can be found in Section 2. 6.

3. 3. 9 User Provisions

The data bus subsystem and the electrical power distribution

subsystem are to be routed to the pallet. The digital interface units

(DIUs) and power distributors are to be located to facilitate interfacing

with the experiment and subsystems equipment located on the pallet.

Sortie Lab user provisions may be found in Table 2.5-1.
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3. 3. 10 Pointing Attitude and Control Subsystem (PACS)

Sortie missions must accommodate a number of different

experiment disciplines with a wide range of pointing and stabilization

requirements which must be provided by the PACS. The following is

a list of requirements indicating ranges:

* Targets (Stellar, Solar, Earth, None)

* Maximum Observation Time (15 sec to 300 min)

* Maximum g-level (No requirement to 10-5g)

* Pointing Accuracy (No requirement to 1 sec)

* Pointing Stability (No requirement to . 05 s-c)

* Contamination (No requirement to stringent

requirement)

* Mission duration (7 days or 30 days)

As a result of the variation in requirements the optimum configuration

for the PACS varies from mission to mission according to the experi-

ment payload. The PACS design is, therefore, a modular concept in

which sensors, actuators and related equipment can be added or re-

moved as a function of the experiment payload. The PACS design

reference model with optional kits designated is shown in Figure 3. 3-5.

When the experiment payloads require pointing accuracies

no less than 0. 5 degrees, allow accelerations up to 10-4g, and have no
stringent contamination requirements, the orbiter attitude control pro-
pulsion system with low thrust RCS is sufficient.

For those payloads requiring low contamination, pointing
accuracies less than 0. 5 degrees, and/or accelerations less than 10-4g.
four 3000 ft-lb-sec advanced Skylab DGCMGs are mounted on the pallet
and are utilized for pointing and stabilizing the Orbiter/Shuttle vehicle.
A strapdown rate gyro package is mounted on the pallet to provide
attitude sensing. The strapdown calculations are periodically updated
from the Orbiter.

For astronomy and earth resources experiments, an SEPB
(Standard Experiment Pointing Base) is mounted on the pallet. The
SEPB has a set of three coarse gimbals and a set of three fine gimbals
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for slewing, pointing, and stabilizing to a fine accuracy about three
axes. See the illustration in Figure 3.3-6. The fine gimbals, utilizing

magnetic actuators and rotating on an air bearing system, are active

only during the fine pointing mode (data taking) after target acquisition.

They have a range of + 2. 5 degrees and an accuracy less than + 1.0
arc sec. The coarse gimbals are driven by torque motors to provide
coverage of the entire hemisphere above the payload bay and to roll
+ 45 degrees about the experiment line of sight. They are used to
maneuver or hold the SEPB with respect to the Orbiter/Sortie vehicle
and to maintain the fine gimbals near their null position during the
fine pointing mode. An acquisition TV is mounted on the SEPB to pro-
vide the experimenter with a view of the target to perform final target
acquisition by a hand controller after the SEPB has been maneuvered
by automatic command to obtain the target within the TV coarse field of
view, + 10 degrees. A high precision rate gyro package is mounted
on the SEPB and used in a strapdown configuration to provide an attitude
reference. This reference is updated periodically from the experiment
fine guidance sensor.

~~-- ---------

S. E. P. B. DEPLOYED

FIGURE 3. 3-6. SEPB CONCEPT
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3.4 Pallet Only

Missions that are classified as pallet only are those that
have pyloads that do not require pressurized module support and need

a large area for mounting and operating experiments or sensors.

3.4. 1 Configuration

The pallet only configuration is the same as described in
Section 3. 2. 1 without the pressurized module. The Orbiter attach

fittings are mounted on the forward ring. Support functions for all

pallet only experiment payloads are furnished by the Orbiter. These

functions are provided through umbilicals and are distributed to the

external experiment payloads. (See Figure 3.4-1.)

32 CM X-RAY OUTER

TV CAMERA FOCUSING TELESCOPE CORONAGRAPH

COLD
PLATE INNERC O O L A N T  ORNAGRAPH METER PHOTO

PALLET

25 CM X UV SPECTROHELIGRAPH

TV CAMERA

ORBITER

FIGURE 3.4-1. REPRESENTATIVE PALLET ONLY MISSION
(ASTRONOMY)

3.4.2 Structure

The structure of the pallet only concept is the same as that
described in Section 3. 3. 2 with the exception of the attach fittings added
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to the forward ring to provide support capability.

3. 4. 3 Environmental Control System (ECS)

The discussion in Section 3. 3. 3 applies also to pallet only

missions with the exception that thermal resources will be provided by

either the Orbiter or pallet-located passive thermal equipment.

3. 4. 4 Electrical Power Subsystem

The electrical power subsystem is the same for the pallet

only configuration as defined in Section 3.3.4 except that the power

distribution subsystem will be modified to provide power distributors

as needed to facilitate interfacing with the experiment and subsystems

hardware.

3. 4. 5 Habitability

For Sortie Lab pallet-only missions the Shuttle rbiter will

provide the necessary habitability elements for Sortie Lab personnel.

The habitability elements are: (a) Facilities - personal hygiene and

galley (food, water and housekeeping), (b) Furnishings - seats, sleep-

ing provisions, garments and personal gear, living accommodations,

off-duty equipment, mobility aids and restraints, and passageways, and

(c) Environmental Requirements - acoustics, temperature, lighting,
air flow and interior design.

3. 4. 6 Communications

The communications subsystem is the same as defined in

Section 3. 1.6.

3. 4. 7 Data Management and Onboard Checkout Subsystems

The data management and onboard checkout subsystems'

functions and hardware requirements are the same as defined in Section
3. 1. 7 except all major components (except the tape recorders) are
mounted on the pallet and the data bus routing is modified to provide
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digital interface units (DIU) located as needed to interface with the
subsystems and experiment hardware. The recorders must be located
in the Orbiter in a controlled environment to permit the crew to change
reels, as needed.

3. 4. 8 Control and Display Subsystem

The pallet only C&D console provides the central control
for Sortie Lab subsystems and experiments during orbit operations.
The pallet only C&D console interfaces with the Sortie Lab computer,
other subsystems and experiments via the data management subsystem's
data bus. Limited hardwire connections exist for critical start up func-
tions which must operate independent of the data bus.

The pallet only C&D console provides the same type capa-
bilities as provided by the support module C&D console. The pallet
only C&D console is located in the Orbiter and configured for only
one man operation as shown in Figure 3.4-2 and includes multifunction
control and display components for both subsystems (Sortie Lab sub-
systems are located either on the pallet or in the Orbiter) and experi-
ment control, dedicated G&D components for subsystem control, and
space for dedicated experiment-supplied C&D components (See Section
3. 1. 8 for further explanation of the C&D console functions).

3. 4. 9 Pointing and Attitude Control Subsystem (PACS)

The pointing and attitude control subsystem (PACS) is the
same as defined in Section 3. 3. 10.

3.4. 10 Mass Properties

For the pallet only mission the pallet mass properties are
the same as those listed in Section 2. 6 with the exception of the pallet
adapter (263 lbs) which is not required.

3.4. 11 User Provisions

The user provisions provided are the same as defined in
Sections 2. 5. 2 and 3. 1. 11 except only one control station is provided
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1. DEDICATED EXPERIMENT C&D

2. ADVISORY PANEL r' 653

3. THERMAL CONTROL SUBSYSTEM DEDICATED C&D

4. STABILITY & ATTITUDE CONTROL DEDICATED CAD

5. MULTIFUNCTION CRT INDICATOR UNIT

6. MICROFILM TO VIDEO CONVERTER

7. MULTIFUNCTION DISPLAY SYMBOL GENERATOR

a. CAUTION & WARNING 3

9. COMPUTER & DATA ACOUISITION C&D

10. ELECTRICAL POWER SUBSYSTEM DEDICATED C&D 1

11. ALPHANUMERIC KEYBOARD 1

12. HAND CONTROLLER (3 AXIS) 13 461

13. TAPE RECORDER CONTROLS 14 6

14. TBD

15. CCTV CONTROLS

18. TIME DISPLAY UNIT 17

17. VIDEO SWITCHING

18. HAND CONTROLLER MODE & ENABLE CONTROLS 1
19. AUDIO UNIT

FIGURE 3.4-2. PALLET ONLY C&D CONSOLE

in the C&D and this station must be time shared between experiments
and subsystems.

3. 5 System Interfaces

The Sortie Lab mission requires that Sortie Lab elements

interface with other programs including the space shuttle, ground faci-
lities, and payloads as shown in Figure 3.5-1. These interfaces are
of importance to Sortie Lab design, since the Sortie Lab system must
be compatible with the interfacing system and is dependent on the sup-
port received from these systems. Another category of interfaces is
the interface connection between the Sortie Lab elements.

3. 5. 1 Intersystem Interface

To meet the requirements of major interfaces between the
Sortie Lab and other systems, interfaces that were insensitive to
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SHUTTLE GROUND FACILITIES PAYLOADS

FIGURE 3..5-1. SORTIE LAB SYSTEM INTERFACES

changes, economical, and flexible to changing Sortie Lab payload

requirements were considered. In taking the approach, the Sortie

Lab interfaces were simplified and minimized the impact of the Sortie

Lab project on the interfacing systems.

3. 5. 1. 1 Shuttle Interfaces

Sortie Lab was designed to be essentially self-sufficient,

thereby having minimum interface with the Shuttle system. Figures

3.5-2, 3.5-3, and 3.5-4 present the typical Sortie Lab payload mechan-

ical and functional interfaces with the Shuttle.

The electrical interfaces between the Sortie Lab and the

Shuttle Orbiter subsystems are shown in Figure 3.5-5. Shuttle electri-

cal power is provided during transport to and from orbit and is pro-

vided as a back-up source during orbit operations. Redundant power

buses are provided. A two way link is provided between the Sortie Lab

data management subsystem, the Shuttle computer subsystem for re-

questing and receiving navigational and timing data and for receiving

commands/data from the ground. All data for transmission to the

ground network stations is routed through the Sortie Labs data exchange

control unit which interfaces with the Shuttle communications subsys-
tem. For the pallet only configuration experiment data may be routed
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SHUTTLE INTERFACES

MECHANICAL INTERFACES FUNCTIONAL INTERFACES

* ATTACHMENT FITTINGS * 2 DC POWER BUSES
* FLEXIBLE TUNNEL 28V, 3 KW AVG.

* 2 DATA CONNECTORS
* 4 HARDWIRE CONNECTORS
-CONTROLS
-CAUTION & WARNING
-VOICE DATA
-WIDEBAND DATA

FIGURE 3.5-2. SORTIE LAB TO SHUTTLE INTERFACES

HOIST POINT FITTINGS

i' ORBITER ATTACH POINTS (4)

GSE SUPPORT POINTS

FLEXIBLE TUNNEL INTERFACE

FIGURE 3.5-3. SORTIE LAB MECHANICAL INTERFACES
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FUEL CELL

- FLEXIBLE TUNNEL

GAS BOTTLE

BULKHEAD FEED-THRU

H2 H2

02 02

' oORBITER INTERFACE PANEL

GSE INTERFACE PANEL

END VIEW OF SORTIE LAB SUPPORT MODULE

FIGURE 3.5-4. SORTIE LAB TO ORBITER FUNCTIONAL
INTERFACES

to the payload support station recorders located inthe Orbiter. A
caution and warning interface is provided to satisfy the Shuttle require-

ment for safety monitoring the payload subsystems by the orbiter crew.

An interface is provided between the Sortie Lab electrical power system
and the environmental control system and with the orbiter control and

display subsystem to provide the capability to power the Sortie Lab sub-

systems up-down from the orbiter and to provide needed status data

prior to the crews entry into the Sortie Lab. Also, a two way voice

link is provided between the orbiter and Sortie Lab.

During ground checkout and prelaunch operations the electri-
cal support equipment will supply electrical power, communications,

and those command, control and data collection and evaluation functions
needed to assure flight readiness.
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SORTIE LAB SHUTTLE

COMPUTER BUFFER STATE VECTOR AND TIMING I E UFR ORBITER
l COMPUTER

EXPERIMENT DATA WIDEBAND ANALOG

EXPERIMENT DATA WIDEBAND/SER DIGITAL ORBITER

DATA VIDEODATA ATA COMMUNICATIONS
EXCHANGE
CONTROL SORTIE LAB TELEMETRY DATA - SERIAL DIGITAL
UNIT

FORMATTER EXPERIMENT, WIDEBAND DATA FOR RECORDSFPSS RECORDERS

CAUTION & WARNING C&W CRITICAL DATA

AUDIO CONTROL TWO WAY VOICE
CENTER (INTERCOM) S ORBITERCONTROLS
POWER CONTROL ON/OFF AND SWITCHING CONTROLS AND
AND MONITORING DISPLAYS

S FUEL CELL CONTROL 1, ON/OFF AND SWITCHING CONTROLS
ELECTRQNICSI

ECS POWER DATA QUIESCENT PERIOD DATA . .

ELECTRICAL 28 VDC POWER
POWER SUBSYSTEM POWER SUBSYSTEM

FIGURE 3.5-5. SORTIE LAB TO ORBITER ELECTRICAL INTERFACES



3. 5. 1. 2 Experiment Payloads

The approach to payload integration has had as an objective
the design of laboratories that will economically provide the versatility

required to be responsive to experiment requirements. The approach
for the physical integration of payloads has been to provide each Sortie
Lab with a basic capability with respect to subsystems performance and
accommodation volume. For specific payloads with greater or more
stringent requirements, add-on subsystems are provided.

Flexibility in the mounting of various internal payload equip-
ment is provided by removable racks that do not affect the basic structure
of the Sortie Lab (Figures 3.5-6 and 3.5-7). This arrangement permits
rapid removal and replacement of payloads.

3. 5. 1. 3 Ground Facilities Interface

The ground servicing panel is the interface connection for
providing resources while the Sortie Lab is mated to the Shuttle Orbiter
vehicle at the launch pad and, after post landing, in the Orbiter safing
area (Figures 3.5-8 and 3.5-9). Umbilicals provide the service lines
that connect the Sortie Lab ground servicing panel through the Orbiter
payload service panel. Services provided by the ground system at the
launch pad include electrical power, cooling loop, cryogenic fluids,
and gaseous fluids.

3. 5. 1. 4 Pallet Only Interfaces

The pallet only interfaces to the Shuttle Orbiter are shown
in Figures 3.5-10 and 3.5-11. Shuttle resources are transmitted to the
experiments on the pallet by umbilicals connected to the Orbiter services
feed-thru. Services provided by the Orbiter include electrical power,
cooling loop, data and control circutis.

3. 5. 2 Intrasystem Interfaces

Interface requirements were defined for the Sortie Lab ele-
ments. Within the family of basic Sortie Lab elements, various com-
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binations of configurations have been configured to support diverse

technology and scientific investigations and practical applications in

earth orbit. Figures 3.5-12 and 3. 5-13 illustrate a standard inler-

face between the pressurized module and the pallet. The pallet

mounted payloads receive their functional support from the pressurized

module and includes such services as electrical power, data manage-

ment, communications and thermal control.

Two Sortie Lab modules employed in the Sortie mission mode

which are always combined are the support and experiment modules.

Figures 3.5-14, 3. 5-15 and 3.5-16 illustrate representative interfaces.

The support module supplies the resources and services to conduct

experiments in the experiment module. As shown, there is a relatively

large number of interface functions between the two modules.

Interfaces for electrical power, data management, and com-

munications must be provided for each of the Sortie Lab's major ele-

ments (support module, experiment module and pallet). For electrical

power, a power distributor and control unit is to be located on or in

each major element and interconnected to the centralized power condi-

tioning and control unit which is located in the pallet. Power is to be

distributed to subsystem and experiment hardware from these power

distributors. The signal/data interfaces for data management and

communications are provided by the data bus. Digital interface units

(DIUs) are located at or near each major item of equipment requiring

signal/data interchange with other subsystems. The DIUs are inter-

connected to the bus control unit using two twisted shield pairs of wire.

The bus control unit is located in the support module near the central
computer.
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SEEXPERIMENT
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EQUIPMENTE
MOUNTING
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EXPRFIGURE 3. 5-6. EXPERIMENT MOUNTINGMOUNTING
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FIGURE 3. 5-6. EXPERIMENT MOUNTING



ATTACH
POINT

PRESSURE SHELL

REMOVABLE
RACK STRUCTURE EQUIPMEN

. ' " FLOOR

FIGURE 3.5-7. EQUIPMENT MOUNTING

GROUND SERVICING PANEL

ELECTRICAL POWER
COOLING LOOP
H2 GSE
02 GSE
GN2 GSE
CRYO 02 FILL
CRYO 02 VENT
CRYO H2 FILL
CRYO H2 VENT
INSTRUMENTATION

FIGURE 3.5-8. SORTIE LAB TO GSE INTERFACE
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12 FT FLOOR WIDTH

10 FT TO 45 FT

GROUND SERVICING PANEL
ELECTRICAL POWER
COOLING LOOP
INSTRUMENTATION

FIGURE 3.5-9. SORTIE LAB PALLET ONLY GSE INTERFACE

" ORBITER ATTACH POINTS (4)

FIGURE 3.5-10. SORTIE LAB PALLET ONLY MECHANICAL
INTERFACE
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ELECTRICAL DATA J-BOX (2)
POWER DATA
CONTROL CIRCUITSCONNECTORS DATA CIRCUITS 12 FT FLOOR WIDTH

ORBITER
COOLING
LOOP EXPERIMENT

INTEGRATION
EQUIPMENT

10 FT TO 45 FT (13.7M)

CONNECTORS TO ORBITER
SERVICES FEED-THRU

FIGURE 3.5-11. SORTIE LAB PALLET ONLY FUNCTIONAL
INTERFACE

INTERFACES

MECHANICAL INTERFACE

* FIELD SPLICE

FUNCTIONAL INTERFACE

* 2 DC POWER BUSES,
28 V

* 2 DATA CONNECTORS

* 4 HARDWIRE CONNECTURS
CONTROLS
CAUTION & WARNING
VOICE DATA

* 1 COOLING LOOP

0 1 REGULATED 28 VDC BUS

* 2 115/208 VAC, 400 HZ

FIGURE 3.5-12. SORTIE LAB PRESSURIZED MODULE TO
PALLET INTERFACES
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CONNECTORS TO ELECTRICAL DATA J-BOX (2)PRESSURIZED LAB POWER DATA
COOLING LOOP CONTROL CIRCUITS

DATA CIRCUITS

EXPERIMENT INTEGRATION
EQUIPMENT

CONNECTORS TO
PRESSURIZED LAB
FEED-THRU

FIGURE 3.5-13. SORTIE LAB PRESSURIZED MODULE TO
PALLET FUNCTIONAL INTERFACES

INTERFACES

MECHANICAL INTERFACES

FIELD SPLICE
AIR DUCTS

FUNCTIONAL INTERFACES

2 DC POWER BUSES,
28V

2 DATA CONNECTORS
4 HARDWIRE CONNECTORS

CONTROL
CAUTION & WARNING
VOICE DATA
WIDEBAND DATA

2 COOLING LOOPS
2 WATER SUPPLY LINES, EXPERIMENTS
1 REGULATED 28VDC BUS
2 115/208 VAC, 400 HZ

FIGURE 3.5-14. SORTIE LAB SUPPORT MODULE TO
EXPERIMENT MODULE INTERFACES
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DOUBLE 0 - RING SEAL

- PRESSURE SHELL

TYPICAL FIELD SPLICE JOINT

ELASTOMERIC BOOT

STRAP

I I

TYPICAL AIR DUCT INTERFACE

FIGURE 3.5-15. SORTIE LAB SUPPORT MODULE TO EXPERIMENT
MODULE MECHANICAL INTERFACE

CABIN AIR
SUPPLY DUCT EXPERIMENT AIR

SUPPLY DUCT

EXPERIMENT POWER BUS
AIR SUPPLY

DUCT
DATA CONNECTOR

CONTROL

O CAUTION & WARNING

O
O

0

COOLING LOOP

WATER SUPPLY

EXPERIMENT AIR
RETURN DUCT

FIGURE 3.5-16. SORTIE LAB SUPPORT MODULE TO EXPERIMENT
MODULE FUNCTIONAL INTERFACE
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4.0 MISSION ANALYSIS

This section will discuss some of the general mission analysis
work that has been performed in support of Sortie Lab. The information
presented is general in nature, and the results are intended more to
show how certain problems have been analyzed and illustrate sensitivi-
ties rather than provide specifics on any mission. Those missions dis-
cussed should be considered representative and the results or conclu-
sions reached are dependent upon the assumptions made.

4. 1 Sortie Missions

The Sortie Lab is a special payload carrier supporting both
multidiscipline and single discipline research and applications experi-

ment missions. The baseline duration of experiment missions is seven
days nominally with extended duration capability up to thirty days pro-
vided. The capability of supporting experiments in orbits with inclina-
tions equal to the latitude-of-launch site (ETR) to near polar is pro-
vided. The Sortie Lab remains in the Orbiter payload bay and is
connected to the Orbiter crew compartment by an access tunnel at the
front-end. The crew, including the mission specialists, principal in-
vestigators, scientists, and/or passengers, ride in the Orbiter during
launch, reentry and landing operations. On orbit, the specialists
normally work in the Sortie Lab but their habitability provisions (such
as food management, personal hygiene and sleeping accommodations),

are provided in the Orbiter. Once on initial orbit, the payload bay
doors are opened exposing the contents to the space environment.

4. 1. 1 Mission Operations

4. 1. 1. 1 Orbit Selection

Orbit selection for some payloads, such as Earth Observations
payloads, is influenced by factors such as sensor field-of-view, loca-
tion of sites to be observed, desired frequency of observation and light-
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ing constraints. These factors are referred to as mission objectives

and are categorized as "desired" and "acceptable. " "Acceptable" in-
dicates the minimum necessary to assure satisfactory attainment of

goals; "desired" would provide redundancy, allow more data samples,
etc. Also the subgroups having differing objectives may require view-

ing of different groups of sites. This complexity of requirements dicta-
tes the requirement for several orbit profiles. It is desirable to mini-
mize the number of different orbits required and still accomplish the
desired (or at least the acceptable) objectives of the experiment groups.
The technique used will be to study each experiment group and, depend-
ing on the experiment priority and orbital observation requirements,
select the experiment groups to be optimized. Next, a quantitative

objective achievement criter:ia will be established to determine how
well the orbits selected for these groups will satisfy the mission
objectives for all the experiment groups.

Once an experiment group has been selected, the orbit which
best satisfies its objectives and constraints will be developed. Those
parameters which must be optimized include: number of sites inter-
cepted; time over site; and time over sites within lighting constraints.
Additionally, an optimizing parameter, which is proportional to the
number of passes per day per site for the mission is considered. Deter-
mination of the optimum orbit for a given experiment is accomplished
by varying parameters such as: altitude, inclination, descending node.
time in phasing orbit, and launch date and time. It is also necessary
to evaluate repeating orbits; those whose groundtracks repeat after
specified intervals.

As an example of the above philosophy, consider the Earth
Observations series of experiments. Analysis has shown that with only
two orbit profiles, missions may be flown which satisfy 95 percent of
the "acceptable" objectives and 89 percent of the "desired" objectives
of all 28 experiment groups. The required orbits are defined as follows.
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Parameter Units Orbit Profile 1 Orbit Profile 2

Altitude-n. mi. 190.0 280.0
-km 352.0 519.0

Inclination-deg 41.7 84. 1

Phasing Angle-deg 11. 0 5.0

Launch Date Sept. 1 May 1

Launch Time-hrs GMT 14:00 15:00

OMS Kit Required No Yes

Orbit selection for astronomy payloads must be responsive to

a number of constraints imposed on celestial viewing. These constraints

are functions of the instruments, the experiments and mission objectives.

The following considerations for viewing will be made:

a. Viewing is not to take place within a certain number of

degrees of the sun and the moon. The values assigned

to these constraints are a function of the instrument

making the observations and the amount of shielding

provided to the instrument.

b. Viewing is restricted to occur above some altitude of

the earth's atmosphere. This constraint is due to

several reasons -- air glow, refraction, absorption

of certain frequencies, contamination, etc.

c. Maximize or optimize the continuous viewing area on

the celestial sphere.

d. Maximize the dark time in orbit which in turn maximize s

the celestial viewing area for darkness viewing.

Other considerations such as radiation levels, communications

coverage, etc. also enter into the orbit selection.
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4. 1. 1.2 Crew Time and Skills

The crew times and skills required to accomplish the mission

objectives of 25 selected payloads are presented in Table 4. 1-1.

The magnitude of the crew hours required by each of the payloads is

not significant in itself, but becomes significant when linked to the

number of crew skills required, the length of the crew work day, the

number of days in the mission, the crew size and the crew work shift.

The number of days available for experiment operations are reduced

from the nominal by the time required to complete launch to orbit

(which may include orbital transfer and phasing required for target-

dependent payloads) and to perform the deboost and landing phases.

Typically there remain 5. 5 and 6. 5 days available for experiment

operations.

The work shift is a function of crew size and the number of

crewmen required to perform the experiments. For example, if two

crewmen are required to operate the instruments, they are scheduled

to work on the same (single) shift. If more experiment performances

are required, then a crew of four men on staggered shifts would be

used. Similarly, if only one man is required to operate the payload,

an essentially 24 hour per day operation may be achieved with a two

man crew working staggered work shifts. Increasing the crew from

two to four crewmen would have virtually no effect on mission accom-

plishment.

The effects of crew size and work shift on mission accom-

plishment are presented in Table 4. 1-2 for the 25 payloads. In general,

doubling the crew size and changing from a single shift to multiple

(staggered) shifts will have the effect of significantly increasing the

mission accomplishment parameters. For target-related payloads

this, however, also assumes an even distribution of target opportuni-

ties.

4. 1. 1.3 Extended Mission Duration Effects on Sortie Lab Payloads

The 47 Sortie Lab payloads listed in Table 2. 3-1 were analyzed
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NUMBER
DISCIPLINE PAYLOAD NUMBER MANHOURS OF SKILLS SKILLS REQUIRED

OF CREWMEN REQUIRED REQUIRED

EO-2 2 111.5 6(2) Electromechanical Technician, Optical
Technician, Agronomist, Geologist
Hydrologist, Geographer

EO-3 2 33.25 6(2) Phototechnician/Cartographer, Electro-
EARTH mechanical Technician, Optical
OBSERVATIONS Technician, Meteorologist, Oceanogra-

pher, Hydrologist

EO-6 2 43.0 4(2) Electromechanical Technician, Optical
Technician, Meteorologist, Oceanogra-
pher

EO-7 1 60.0 1 Technologist with Cloud Physics
training

COM/NAV C/N-I 2 66.8(1) 2 Electrical Engineer, Optical Technician

A-I 2 92.4 1 Astronomer/Astrophysicist
ASTRONOMY A-2 2 72.6 1 Astronomer/Astrophysicist

A-3 2 59.85 1 Astronomer/Astrophysicist

MATERIALS
SCIENCE MS 4 277.8 4

(2)  
Biological Technician, Matallurgist,
Materials Scientist, Electromechanical
Technician

TECHNOLOGY T-1/2 2 74.2 2 Electromechanical Technician, Thermo-
dynamicist

PLANETARY P-i 2 54.5 1 Technician

SP-1 2 128.0 2 Electromechanical Technician, Physicist

SP-2 2 30.0 2 Electromechanical Technician, Physicist

SP-3 1 10.5 2(2) Electromechanical Technician, Physicist

SP-4 1 42.0 2(2) Electromechanical Technician, Physicist

SP-5 2 20.0 2 Electromechanical Technician, Physicist

SP-6 2 20.0 3(2) Electromechanical Technician, Physicist
Pilot/Navigator

SPACE SP-7 2 20.0 2 Electromechanical Technician, Physicist
PHYSICS (2)SP-8 2 44.0 3 Electromechanical Technician, Physicist

Pilot/Navigator

SP-9 2 32.0 2 Electromechanical Technician, Physicist

SP-10 1 15.0 1 Physicist

SP-11 1 2.0 1 Electromechanical Technician

SP-12 2 75.0 3(2) Physicist, Physical Chemist, Electro-
mechanical Technician

SP-13 2 100.0 4
(2 )  

Physicist, Physical Chemist, Thermo-
dynamicist, Electromechanical
Technician

SP-14 - 2 75.0 3(2) Physicist, Thermodynamicist, Electro,
mechanical Technician

NOTE: (1) Obtained from Sortie Lab Task 4.1.2.4.1 updates.

(2) Cross-Training required.

TABLE 4. 1-1. EXPERIMENTER SKILLS REQUIREMENTS
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CREW SIZE I  WORK SHIFT 2  AVAILABLE MANHOURSDISCIPLINE PAYLOAD (NUMBER OF CREWMEN) (TYPE) UTILIZED
1 2 3 4 SINGLE STAGGERED (PERCENT)

EO-2 106 104 89
EARTH EO-3 132 68 35

OBSERVATIONS EO-6 180 298 59
EO-7 227 241 100

COMMUNICATION/
NAVIGATION COM/NAV 58 70 32

A-2 100 100 46
ASTRONOMY A-1/2 100 100 57

A-3 100 100 38

MATERIALS SCIENCE MS 531 58 52

TECHNOLOGY T-1/2 100 100 52

PLANETARY PLANETARY 100 100 47

SP-3,4,10,11 1001 N/A *293
SPACE PHYSICS SP-1,2,5,6,7, 100 N/A *73

8,9,12,13,14

*Arithmetic mean.

1. The values in this column represent the percent of required manhours scheduled.
2. The values in this column represent the percent of experiment hours scheduled.
3. Average value for payloads listed.

TABLE 4. 1-2. PAYLOAD SPECIALIST, SIZE, WORK SHIFT,
AND UTILIZATION FOR SELECTED SORTIE
LAB PAYLOADS FOR 7-DAY MISSIONS



to determine if they would benefit (1) from extending the mission dura-

tion from 7 to 30 days and, (2) from repeated 7 day missions versus an

extended mission. The principal sources of data for this analysis were

the NASA "Blue Books" (NHB 7150. 1 dated 15 January 1971). The

scientific objectives of each payload were analyzed to determine the

nature of the phenomena under investigation and importance of extended

and/or multiple observations. It was recognized that there are many

other factors that will impact the mission'duration and number of flights

required for each payload. The more important of these are probably

mission optimization parameters such as lighting, ground track and

cloud cover; and programmatic parameters such as development and

launch schedules, costs and number of flights. These were, however,

outside the scope of this study and, therefore, were not considered.

Based solely on the Blue Books, all of the payloads shown

in Table 4. 1-3 benefit from extending the mission beyond 7 days except

for payloads T-4 (Slush Propellants), T-9 (Teleoperations), SP-2

(Cometary Physics), and three of the Earth Observations payloads. The

Slush Propellants payload (T-4) requires only 36 hours for completion,

including setup and shutdown procedures. Therefore, this payload can

easily be completed in only one 7 day mission. The initial flight for

Teleoperations (T/O) will be conducted to demonstrate the flight per-

formance and safety characteristics. This can be accomplished in 104

operating hours; therefore, it will not require more than 7 days. The

Cometary Physics payload (SP-2) requires 90 minutes per run. This

run time includes both the setup and calibration (60 minutes) and 30

minutes for both the gaseous cloud release and spectrometric measure-

ments. Several runs are required to establish confidence in the measure-

ments. Since it is possible to perform 80 runs during a 7 day mission,

this payload would not benefit from extending the mission duration. No

decision was reached for payloads EO-7 (Atmospheric Cloud Physics

Experiment and Lab), EO-8 (Freezing Drop Experiment), and EO-9

(Droplet Charge) because the experiment durations have not been estab-

lished in the Blue Book.
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BENEFITED BY BENEFITED BY
PAYLOAD (CODE AND NAME) EXTENDED REPEATED 7

MISSION DAY MISSIONS

EO-1 METEOROLOGICAL AND ATMOSPHERIC SCIENCES YES (1 YES
EO-2 LAND USE MAPPING YES (1 NO (5)EO-3 POLLUTION YES (1 NO
EO-4 RESOURCE RECOGNITION YES (1 NO (5)EO-5 DISASTERS ASSESSMENT YES (1 NO
EO-6 OCEAN RESOURCES YES (1 NO
EO-7 ATMOSPHERIC CLOUD PHYSICS EXP. AND LAB. TBD (2 TBD (2)
EO-8 FREEZING DROP EXPERIMENT TBD (2) TBD (2)
EO-9 DROPLET CHARGE TBD (2) TBD 2)

C/N-i COMMUNICATION/NAVIGATION YES (1) NO

MS-1 BIOLOGICAL YES (1) YES
MS-2 LEVITATION YES (i) YESMS-3 FURNACE YES (1) YES
MS-4 SMALL AND LOW TEMPERATURE YES (1) YES

A-i IM PHOTOHELIOGRAPH YES (1) NO
A-2 SOLAR SPAR YES (I) NO
A-3 STRATOSCOPE III YES (1) NO
A-4 WIDE ANGLE UV (0.3 M) YES (1) NOA-5 IR TELESCOPE YES 1) NOA-6 SMALL UV TELESCOPE YES i NO
A-7 1.5 M PHOTOHELIOGRAPH YES NO

T-1 CONTAMINATION MEASUREMENTS YES 1) NOT-2 MONITOR YES 1) NO
T-3 SHORT TERM CRYOGENICS (3) YES 1) NO
T-4 SLUSH PROPELLANTS NO NOT-5 NON-CRYOGENICS (A) YES 1) NO
T-6 NON-CRYOGENICS (B) YE 1) NOT-7 ASTRONAUT MANEUVERING UNIT YES 1 YES
T-8 MANEUVERABLE WORK PLATFORM YES 1) YEST-9 TELEOPERATIONS NO (4) NO (6)

P-1 PLANETARY TELESCOPES YES (1) NO
SP-1 ATMOSPHERIC AND MAGNETOSPHERIC SCIENCE YES (1) NO
SP-2 COMETARY PHYSICS NO NO
SP-3 METEOROID SCIENCE YES (1 NOSP-4 SMALL ASTRONOMY TELESCOPE YES (1 NOSP-5 WAKE MEASUREMENTS FROM STATION AND BOOMS YES (1 NOSP-6 WAKE MEASUREMENTS FROM SUBSATELLITE YES (1) NO
SP-7 PLASMA RESONANCE YES NOSP-8 WAVE PARTICLE INTERACTIONS YES (1) NOSP-9 ELECTRON AND ION BEAM INJECTION YES (1) NOSP-10 COSMIC RAY MAGNETIC SPECTROMETER YES (1) NO
SP-11 PLASTIC/NUCLEAR EMULSION YES (I NOSP-12 AIRLOCK AND BOOM EXPERIMENT YES (1 NO
SP-13 FLAME CHEMISTRY AND LASER EXPERIMENT YES (I NO
SP-14 TEST CHAMBER EXPERIMENTS YES (1) NO

LS- MINI-30 YES (1) NOLS-2 MINI-7 YES (1) NO

EO - Earth Observations
C/N - Commnunication/Navigation
MS - Materials Science
A - Astronomy
T - Technology
P - Planetary
SP - Space Physics
LS - Life Sciences

1. Would prefer mission durations of greater than 30 days.
2. Experiment duration has not been established in the Blue Book.
3. The requirements for Long Term Cryogenics were used because the Short TermCryogenics payload was not in the Blue Book.
4. No on initial flight, yes on subsequent flights.
5. Yes, if repeated 7-day flights provide overlapping coverage in excess of 30 days.6. Yes, if more than one development flight required.

TABLE 4.1-3. PAYLOAD SUMMARY
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Only seven of the payloads presented in Table 4. 1-3 benefit

from repeated 7-day missions. These seven payloads are listed below:

* EO-1 (Meterological and Atmospheric Sciences)

* MS-1 (Biological)

* MS-2 (Levitation)

* MS-3 (Furnace)

* MS-4 (Small and Low Temperature)

* T-7 (Astronaut Maneuvering Unit)

* T-8 (Maneuverable Work Platform)

The Meteorological and Atmospheric Sciences payload (EO-1) prefers

a mission duration in excess of 30 days, but only requires three observa-

tions per week. Therefore, this payload would benefit from repeated

7-day missions. The remaining six payloads (MS-1, MS-Z, MS-3,

MS-4, T-7, and T-8) also prefer to have mission durations in excess

of 30 days, but need to have periodic supporting tests and evaluations

performed on the ground. For instance, the MS-2 (Levitation) payload

is used to perform glass preparation experiments in support of a variety

of programs conducted at glass research laboratories on the ground.

The experimental runs will be used primarily to supply samples for

evaluation and research by the laboratories. The T-7 (Astronaut Maneu-

vering Unit) payload is used for the purpose of developing understanding

and control over the problems associated with astronaut maneuverability

in extravehicular activity (EVA). This objective is to be met by evaluat-

ing the Astronaut Maneuvering Unit (AMU) during tethered and untethered

EVA. Data will be collected to evaluate the AMU system, and later

repetitions of the flight tests may be performed, following changes to
hardware design or operational procedures. Therefore, these payloads

would benefit from the repeated 7-day flights since the time between

flights could be used for evaluation and any needed improvements or

corrections would be made before the next flight.

Because of the long duration inherent in extended missions,
it was decided that a new operational philosophy should be determined.

Skylab mission operations were examined and compared to those developed
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for Sortie Lab. The work day for extended missions was reduced from

12 hours to 10 hours per day in order to provide for mission planning

and off-duty time, and to allow additional time for systems housekeep-

ing and meals. The crew cycle developed for extended missions is pre-

sented in Table 4. 1-4. It can be seen from Table 4. 1-4 that no time

was allotted in the crew cycle for exercise. It was assumed that this

activity (0. 5 hour per day per crewman) could be performed during

the work period. Only one payload (EO-7) utilizes 100 percent of the

available manhours. The average crew utilization for the other payloads

were approximately 56 percent, therefore, there should be ample time

available each day for crew exercise. In addition to the shorter workday,

approximately every seventh day (mission days 8, 15, and 22) are de-

signated as a non-work day. It was determined that part, and in some

cases, all of the first and last days of the mission would not be available

for experiment operations because of orbit phasing and Sortie Lab check-

out.

NUMBER OF
PERFORMANCES TOTAL TIME

PER DAY PER DAY
CREWCYCLE ACTIVITY PER CREWMAN (HRS)

EAT - MEALS 3 3.0

PH - PERSONAL HYGIENE 2 .5

S/HK - SYSTEMS HOUSEKEEPING 1 .5
(
1)

MP - MISSION PLANNING 1 1.0

OD - OFF DUTY 1 1.0

EX - EXERCISE 1 0.0
(2 )

SLEEP - SLEEP 1 8.0

WORK - TIME FOR EXPERIMENTATION 1 10.0

TOTAL 24.0

(1) BASED ON 4 MAN CREW (2 MANHOURS PER DAY)

(2) PERFORMED DURING WORK PERIOD (.5 HOURS PER DAY)

TABLE 4.1-4. CREWCYCLE FOR EXTENDED MISSIONS
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New payload performance requirements were developed for
extended missions. It was decided that the extended mission payload

performance requirements should be based on the available number of
crew hours.

Different scale factors were developed for each payload

based on (1) the shorter crew work day (10 vs. 12 hours), (2) the number
of non-experiment days (3 days) and (3) whether the payload was origi-

nally operated for 5, 5. 5, 6, or 6. 5 days during the 7-day mission.
These scale factors, the payloads and the corresponding experiment
operation times for both the 7-day missions and the extended missions
are presented in Table 4. 1-5. These factors were then used to arrive
at the extended mission performance requirements. The performance
requirements for both the 7-day missions and the extended missions are
shown in Table 4. 1-6.

The impact of extended missions on the Sortie Lab subsystems
was determined by applying the scale factors (Table 4. 1-5) to the pay-
loads analyzed. The number of performances and the number of operating
hours which were scheduled for the 7-day missions were scaled up to

show what could be expected for the extended missions and are present-
ed in Table 4. 1-7. The energy and data storage (digital, analog, and
film) required to support the extended missions were also scaled up
from the 7-day missions and are presented in Table 4. 1-8.

The increases in energy noted in Table 4. 1-8 for the longer
duration missions will have a significant impact on the electrical power
subsystem. This impact will be manifested in the increased weight of
the fuel cell reactants (0 2 and H2) , the by-product of the reaction (H 2 0),
and in the attendant plumbing and tankage required for storage. There
will also be a significant increase in the volume required to accommo-
date the reactants and the H20 produced by the fuel cells.

The data storage subsystem will be impacted by the weight
and volume of the additional reels of tape and film required to return
the larger quantities of data as presented in Table 4. 1-8.

The extended missions also will impact those payloads, such
as Materials Science, which require samples for experimentation.

4-11



7-DAY MISSION EXTENDED MISSION
PAYLOAD EXPERIMENT OPERATION EXPERIMENT OPERATION SCALE

TIME TIME FACTOR I

HOURS/MAN DAYS HOURS/MAN DAYS

EO-2 66. 5.5 255. 25.5 3.9
EO-3 60. 5.0 250. 25.0 4.2
EO-6 66. 5.5 255. 25.5 3.9
EO-7 66. 5.5 255. 25.5 3.9

C/N-I 60. 5.0 250. 25.0 4.2

A-1/A-2 78. 6.5 265. 26.5 3.4
A-2 78. 6.5 265. 26.5 3.4
A-3 78. 6.5 265. 26.5 3.4

MS-1
MS-2 72. 6.0 260. 26.0 3.6
MS-3
MS-4J

T-) 72. 6.0 260. 26.0 3.6
T-2

P-I 60. 5.0 250. 25.0 4.2

SP-1 72. 6.0 260. 26.0 3.6
SP-2 2  60. 5.0 250. 25.0 4.2
SP-3 60. 5.0 250. 25.0 4.2
SP-4 60. 5.0 250. 25.0 4.2
SP-5 12. 1.0 TBD3 TBD TBD
SP-6 12. 1.0 TBD TBD TBD
SP-7 12. 1.0 TBD TBD TBD
SP-8 24. 2.0 TBD TBD TBDSP-9 24. 2.0 TBD TBD TBDSP-10 60. 5.0 250. 25.0 4.2SP-11 60. 5.0 250. 25.0 4.2SP-12 60. 5.0 250. 25.0 4.2SP-13 60. 5.0 250. 25.0 4.2SP-14 60. 5.0 250. 25.0 4.2

1. Based on the ratio of work hours available per crewman per day.
2. Included for information only,requires less than 7 days for completion

as defined in the Blue Book.
3. To be determined.

TABLE 4. 1-5. SCALE FACTORS
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7 DAY MISSION EXTENDED MISSION
NUMBER OF OPERATE TIME NUMBER OF OPERATE TIME

PAYLOAD PERFORMANCES REQUIRED MANHOURS PERFORMANCES REQUIRED MANHOURS
REQUIRED (HRS) REQUIRED REQUIRED (HRS) AVAILABLE REQUIRED

EO-2 11 4.6 111.5 43 17.9 510. 434.9
EO-3 25 5.0 33.3 105 21.0 500. 139.9EO-6 20 5.0 43.0 78 19.5 510. 167.7EO-7 20 40.0 60.0 78 156.0 510. 234.0

C/N-I 39 6.1 66.8 164 25.6 500. 280.6

A-1/A-2 1 149.4 92.4 1 508.0 530. 314.2A-2 1 149.4 72.6 1 508.0 530. 246.8A-3 1 150.6 59.9 1 512.0 530. 203.7

MS-17
MS-2
MS-3 130 720.0 277.8 540 2592.0 1040. 1000.1
MS-4

T-l1
T-2 41 697.0 74.2 148 2509.2 520. 267.1

P-i 15 120.0 54.5 63 504.0 500. 228.9

SP-1 1 120.0 128.0 1 432.0 520. 460.8
SP-2 1  

10 10.0 30.0 42 42.0 500. 126.0
SP-3 1 112.0 10.5 1 470.4 250. 44.1
SP-4 5 80.0 42.0 21 336.0 500. 176.4
SP-5 1 16.0 20.0 TBD TBD TBD TBD
SP-6 1 12.0 20.0 TBD TBD TBD TBD
SP-7 1 16.0 20.0 TBD TBD TBD TBD
SP-8 2 16.0 44.0 TBD TBD TBD TBD
SP-9 2 16.0 32.0 TBD TBD TBD TBD
SP-10 1 115.0 15.0 1 483.0 250. 63.0
SP-11 1 118.0 2.0 1 495.6 250. 8.4
SP-12 5 50.0 75.0 21 210.0 500. 315.0
SP-13 5 50.0 100.0 21 210.0 500. 420.0
SP-14 5 45.0 75.0 21 189.0 500. 315.0

1. Included for information only, requires less than 7 days for completion as defined in the Blue Book.

TABLE 4. 1-6. PERFORMANCE REQUIREMENTS



7 DAY MISSION EXTENDED MISSION
NUMBER OF OPERATE TIME NUMBER OF OPERATE TIME

PAYLOAD PERFORMANCES SCHEDULED PERFORMANCES SCHEDULED
SCHEDULED _ (HRS) SCHEDULED (HRS)

EO-2 39 4.8 152 17.3
EO-3 36 3.4 151 14.3
EO-6 44 14.9 172 58.1
EO-7 48 97.0 187 378.3

C/N-I 75 11.6 315 48.7

A-1/A-2 1 149.4 1 508.0
A-2 1 149.4 1 508.0
A-3 1 150.6 1 512.0

MS-1
MS-2
MS-21 86 418.5 310 1506.6
MS-4

T-2 41 697.0 148 2509.2

P-I 15 120.0 63 504.0

SP-1 1 120.0 1 432.0
SP-21 10 10.0 42 42.0
SP-3 1 112.0 1 470.4
SP-4 5 80.0 21 336.0
SP-5 1 16.0 TBD TBD
SP-6 1 12.0 TBD TBD
SP-7 1 16.0 TBD TBD
SP-8 2 16.0 TBD TBD
SP-9 2 16.0 TBD TBD
SP-10 1 115.0 1 483.0
SP-11 1 118.0 1 495.6
SP-12 5 50.0 21 210.0
SP-13 5 50.0 21 210.0
SP-14 5 45.0 21 189.0

I. Included for information only, requires less than 7 days for completion
as defined in the Blue Book.

TABLE 4. 1-7. EXPECTED EXPERIMENT PERFORMANCES
SCHEDULED
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7-DAY MISSION EXTENDED MISSION

ENERGY DIGITAL DATA ANALOG DATA FILM DATA ENERGY DIGITAL DATA ANALOG DATA FILM OAIA
PAYLOAD REQUIRED STORAGE REQUIRED STORAGE REQUIRED STORAGE REQUIRED REQUIRED STORAGE REQUIRED STORAGE REQUIRED STORAGE REQUIRED

(KWH) (KB) (MIN) (FRAMES) (KWH) (KB) (MIN) (FRAMES)

EO-2 62.9 86.8 x 107 NONE 19.4 x 10
3  

245.3 338.5 x 107 NONE 75.7 x 10

EO-3 38.8 62.8 x 10
7  

NONE 18.4 x 10
3
CM 163.0 263.8 x 107 NONE 77.3 x 10

3
CM

EO-6 66.1 27.5 x 108 NONE 80.0 x 10
3
CM 257.8 107.3 x 108 NONE 312.0 x 10

3CM

EO-7 19.2 4100 FT NONE 21.0 x 104 74.9 15990 FT NONE 81.9 x 104

C/N-I 292.3 18.0 x 105 720. 5 REELS 35MM 1227.7 75.6 x 105 3024 21 REELS 35MM
5 ROLLS 16MM 21 ROLLS 16MM

A-I/A-2 166.2 46.3 x 105 NONE 153.5 x 10
3  

565.1 157.4 x 105 NONE 521.9 x 103

A-2 106.9 95.6 x 10
4  

NONE 33.1 x 10
3  

363.5 325.0 x 104 NONE 112.5 x 103

A-3 72.4 11.9 x 105 NONE 4.5 x 10
3  

246.2 40.5 x 105 NONE 15.3 x 103

MS-11

MS-3 486.0 4.8 x 108 NONE NONE 1749.6 17.3 x 10
8  

NONE NONE
MS-4

T2 72.6 41.8 x 10 NONE NONE 261.4 150.5 x 106 NONE NONE

P-1 57.8 13.6 x 107. NONE 1.0 x 10
3  

242.8 57.1 x 107 NONE 4.2 x 10
3

SP-1 88.4 16.9 x 10 7200. NONE 318.2 60.8 x 10 25920. NONE

SP-2 ' 38.7 7.2 x 105 NONE 8.0 x 102 162.5 30.2 x 105 NONE 33.6 x 102

SP-3 1.3 1.6 x 102 NONE NONE 5.5 6.7 x 10
2  

NONE NONE

SP-4 42.2 25.9 x 106 NONE 9.6 x 10.2 177.2 108.8 x 106 NONE 40.3 x 102

SP-5 7.9 10.4 x 106 90. NONE TBD TBD TBD TBD

SP-6 9.7 2.6 x 106 NONE NONE TBD TBD TBD TU

SP-7 7.5 7.6 x 106 NONE 9.6 x 10
2  

TBD TBD TBD TBD

SP-8 14.1 17.2 x 10
5  

800. NONE TBD TBD TBD TDD
SP-9 13.6 6.8 x 106 960. NONE TBD TBD TBD TBD
SP-10O 11.8 21.6 x 105 NONE NONE 49.6 90.7 x 10 NONE NONE
SP-ll 1.8 NONE MNOE NONE 7.6 NONE NONE NONE
SP-12 2.3 8.1 x 106 NONE 8.0 x 10

2  
9.7 34.0 x 106 NONE 33.6 x 102

SP-13 10.8 10.8 x 107 NONE 8.0 x 10
2  

45.4 45.4 x 107 NONE 33.6 x 102
SP-14 34.7 4.7 x 106 NONE 40.0 x 102 145.7 19.7 x 10

6  
NONE 168.0 x 102

1. Included for information only,requires less than 7 days for completion as defined in the Blue Book.

TABLE 4. 1-8. ENERGY AND DATA STORAGE REQUIREMENTS
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Extra weight and volume will be required for storage of the additional

samples for the longer mission durations.

The environmental control system (ECS) will be impacted by

the additonal 0 2 /N 2 required for the crew. This impact will be mani-

fested in the increased weight and volume of the O2/N 2 and the attendant

plumbing and tankage required for storage. There will also be a re-

quirement for more lithium hydroxide canisters for CO 2 removal.

The extended mission will also have an impact on the crew

provisions required. Additional food, water, and waste management

provisions will be required. Also, additional clothing and personal

hygiene provisions will be necessary. In general, any subsystem hav-

ing consumables or time-dependent components will be similarly affect-

ed.

4. 1.2 Experiment Flight Operations Requirements

4. 1. 2. 1 Orbit Environment

Many of the Sortie Lab experiments and payloads are sensitive

to the orbital environment in which they are to operate. Radiation and

g-level environments are two factors which can be analyzed and control-

led to some degree through orbit selection.

High radiation levels can produce intolerably high noise levels
during measurements and arcing of high voltage equipment, generally

resulting in significant degradation of overall systems performance.

The South Atlantic Anomaly region of the Van Allen radiation belt is a
particularly significant source of this potentially harmful radiation

(high energy protons and electrons).

In general, orbits having inclinations of 35 to 45 degrees will
spend the most time in the high radiation regions and the amount of
time spent in these radiation regions increases with altitude. For
those missions that are radiation sensitive, the course of action would
be to select orbits which have both low inclinations and low altitudes.

This may not always be the best course of action from a total mission
point-of-view and it would be highly desirable to be able to trade off
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experiment degradation and reduced systems performance caused by

radiation versus overall mission objectives and performance. It may

be both desirable and cost effective to provide sufficient shielding for

the various experiments which are radiation sensitive and thereby

allowing more productive orbits to be chosen from an overall mission

standpoint.

Most experiments and payloads are not overly sensitive to

g-level constraints. Figure 4. 1-1 gives a somewhat worst case look

at what g-levels might be expected. These g-levels are referenced to

the 1970 Jacchia density model, a + 2 a solar activity predictions during

the peak of the next solar cycle (as shown in Figure 4. 1-3), a Shuttle/

payload mass of 95, 254 kg (210, 000 pounds), and a linear interpolation

of the drag coefficients (CDA in square meters) between the following

altitudes: CDA value for 185 km (100 n. mi. ) is 662.09 m 2 , CDA value

for 370 km (200 n. mi. ) is 878. 25 m , and CDA value for 555 km

(300 n. mi.) is 884. 10 m . These g-levels can be scaled to any other

ballistic coefficient (m/CDA) by multiplying the g-level shown by the

ratio of m/CDA (used to generate curves) divided by m/CDA (desired).

The drag coefficients given above are for the Shuttle holding an inertial

attitude throughout each orbit. As can be seen for altitudes above 278
-6

km (150 n. mi.) the g-levels are on the order of 10 - 6 or less which

should be sufficiently low for all payloads and experiments. Figure

4. 1-2 illustrates similar g-level information based on a prediction of

the expected value or nominal solar activity during this same time frame.

These g-levels are reduced considerably should the Shuttle maintain an

orbital attitude where either the nose or tail of the Shuttle is maintained

along the orbital velocity vector (local horizontal attitude).

4. 1. 2. 2 Payload Crew Work Cycles

Other programs have shown that, when an experimenter is

working his problem he may actually tend to rest in an irregular pattern

of short periods to increase the overall duration of experimentation per-

formed over a recognized limited period of opportunity. This type

motivation can most assuredly be expected in Sortie Lab operations.
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The extent to which a necessarily disciplined flight plan and systems

limitation can accommodate relative improvisation or "free wheeling"

by experimenters is the subject for considerable analysis, but mnay well

be the key to the Shuttle systems payoff and acceptance by the scientific

and commercial communities.

Allocation of crew activities from past studies along with an

improvised "free wheeling" option are presented below:

Baseline Alternate 1 Alternate 2

Sleep 8 hrs 8 hrs 5 to 8 hrs

Personal Hygience (PH) 1-1/2 hrs 1-1/4 hrs 1-1/4 hrs

Eat 1-1/2 hrs 1-3/4 hrs 1-1/4 hrs

Exercise (EX) 1/4 hr 1/2 hr 1/4 hr

Housekeeping(HK) 3/4 hr 3/4 hr 3/4 hr

Work 12 hrs 11 hrs 12 to 15 hrs

Planning 3/4 hr 1/2 hr

Figure 4. 1-4 presents a representative baseline four-man crew activities

timeline for 24 hours.

4. 1. 3 Sortie Mission Orbit Capability

Sortie mission orbit capability is dependent upon the operational

requirements of each sortie mission and upon the Shuttle vehicle character-

istics. The type of rendezvous technique, orbital transfer requirements,

mission duration, pointing requirements, operational constraints, etc.

must be determined when calculating the orbit and payload capabilities

of the Space Shuttle system. The data contained in this section represent

typical sets of operational requirements. A detailed definition of the

Space Shuttle transportation system and associated payload accommoda-

tions used in this study is contained in Space Shuttle System Payload Accom-

modations, JSC 07700, dated April 13, 1973. For mission planning, the

weight of the Sortie Lab plus pallet plus Orbiter payload weight chargeable

items should be added in constructing the total mission weight (reference

Section 2. 6). This total weight can then be compared to the performance
curves (Figures 4. 1-5 and 4. 1-6) to verify the capability of the Space
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FIGURE 4. 1-4. REPRESENTATIVE 4-MAN CREW DUTY CYCLE

Shuttle system to perform the particular sortie mission. Since both WTR

and ETR are planned launch sites, the launch azimuth constraints for

both are shown in Figure 4. 1-7.

Figures 4. 1-5 and 4. 1-6 were constructed based on no phasing
constraints (range alignment between vehicles or vehicle and point in orbit)

and on carrying the entire payload weight throughout all mission maneuvers.

If on-orbit phasing is required either to shift the ground track to achieve
Sortie Lab experiment objectives or for rendezvous purposes, additional

orbital maneuvering system (OMS) propellant is required; consequently,

payload capabilityto a given altitude is reduced by the amount of additional

OMS propellant and associated tankage.

The Orbiter's integral OMS tankage has been sized to provide
1,000 fps delta-velocity capability to the Orbiter with 65, 000 lbs of payload.
Up to three extra OMS kits can be installed for increased operational mis-
sion capability. Each kit contains one-half as much usable propellant as
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the integral OMS tankage resulting in a total propellant capacity 2. 5

times that of integral tankage. The OMS kits are located in the cargo

bay and their.weight and volume are charged to the payload.

Sortie mission orbit capability greater than the currently

designed 7-day missions may become desirable for some Sortie Lab

missions for such purposes as conducting experiments, making observa-

tions of objects that could not normally be scheduled within 7 days, in-

creasing experiment or observation time, etc. Since the Shuttle design

is assumed to include the capability of remaining in orbit for up to 30

days, the primary impact to the payloads would be weight and length

reductions due to the Shuttle having to carry extra consumables, tanks,

and plumbing that would be charged to the payload. A preliminary

analysis of extending the mission duration up to 30 days has been per-

formed considering the impact on electrical power (EPS), environmental

control and life support, and reaction control (RCS) propellant for point-

ing requirements and for orbit maintenance.

A major impact to the payloads resulted from the additional

electrical energy capability required primarily for the extended operation

of the orbiter and secondarily for the payloads. Effects of the other sub-

systems on performance was generally small, although RCS requirements

for orbit maintenance for low orbits ( - 100 n. mi.) was large.

Since the Space Shuttle vehicle design is continually changing,

the sortie mission orbit capability is preliminary and should be reassessed

as the Shuttle design matures. In particular, the current Shuttle design

employs the OMS system for orbit insertion and hence must employ the

OMS kits at lower altitudes than were employed in these Sortie Lab Phase

"B" studies (for additional information, see revision "A" of SSS PLA,

JSC 07700, dated July 16, 1973).

4-23



5.0 OPERATIONS ANALYSIS

5. 1 Flight Operations

The Sortie Lab major flight operations phases consist of:

launch to orbit, pre-experiment operations, lab deactivation and

configuration for deboost, reentry and landing, ground refurbishment,

and payload integration. The launch to orbit and reentry flight phases

will not be discussed in detail, since they are primarily Shuttle

operations.

Liftoff occurs with all Orbiter main engines and the twin

solid rocket boosters (SRB's) burning.

SRB end-of-web action time occurs at 106 sec into the flight

and the SRB's are separated at 116 sec. Water impact occurs

approximately 124 n. mi. downrange. From there, the SRB's are

towed back to the launch facility.

The Shuttle maintains an intact abort capability, permitting

recovery of the crew and payload after an abort inducing failure at

any time during the mission.

Following orbit insertion, residual external tank (ET) pro-

pellants are dumped and the vehicle maneuvers to an attitude appropriate

for ET disposal. At the proper time into the coast, the ET is separated

with a velocity magnitude and orientation such that it will impact into

the Indian Ocean in a low shipping density area.

Following ET separation, the Orbiter is free to begin on-orbit

operations, including the circularization burn at apogee of the transfer

ellipse.

5. 1. 1 On-Orbit Operations

After orbital insertion the Sortie Lab is activated, if required,

before experiment operations are begun. A representative activation

sequence is presented in Table 5. 1-1.

Following Sortie Lab activation (if required) experiments

are conducted over about a six-day period. During this phase, the

Shuttle is required to: I) minimize acceleration levels when zero-g
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FUNCTION SEQUENCE REQUIREMENTS/REMARKS

FLIGHT OPERATIONS - ACTIVATION 6 hr 24 hr 48 hr

Complete Initial Activation TB1 + 5 hr 43 min Verify Sortie Lab pressure 14.7 + TBD psia,
temperature 700 F + 300 F, partial pressure 0

AT = 4 hr 3.1 +.6 psia, and partial pressure CO2  2
S10 MMHG.

* Open Cargo Bay Doors

a Deploy Sortie Lab Radiator

* 02 and N2 Supply Valves to open From orbiter. Fans are already on for mixing.

* Equalize Orbiter/Tunnel/Sortie
Lab Pressure

* Open Tunnel Hatch and Latch Open

* Turn On Sortie Lab Initia-1 Entry From orbiter.
Lights

* Open Sortie Lab Hatch and Latch
Open

* Turn On General Illumination
Lighting

e Visual Inspection Verify absence of fire, smoke,

* Complete ECS Activation structural damages, etc.

* Position all Source Select Condensate system, fan control, temperature
Switches to Internal controller, radiator control, pump control and

water storage control.
* Condensate Transfer Pressure

to ON

* Condensate Launch Switch to
Normal

* 'ater Storage Controller
Power ON

* Complete EPS Activation Source select switch to internal.

e Final C&W System Activation

* Final C&D Console Activation

* Activate Data Management System

TABLE 5. 1-1. FLIGHT OPERATIONS - ACTIVATION



laboratory experiments are being conducted, 2) hold specific attitudes

with a + 0. 5 degree accuracy for earth observation measurements last-

ing up to 30 minutes per opportunity during repeated passes over the

target area, and 3) hand over attitude control to the payload carrier

control moment gyros (CMG's) for extended periods (days) when

extremely high pointing accuracy and stability and a minimum

contamination environment are necessary (during celestial observation

experiments).

5. 1. 1. 1 Payload Crew Operations

Payload crew operations consist primarily of setup, checkout,

calibration, operation, analysis, and data management, of scientific

and applications experiments. The typical Sortie Lab payload crew

(experimenter/user crew) is comprised of payload specialists who are

responsible for payload/instrument operations. These specialists will

have a detailed knowledge of instruments, payload operations, experiment

requirements, experiment objectives, and supporting equipment.

The Sortie Lab flight operations planning at the time of this

effort adhered to the following guidelines and constraints relative to

payload crew operations:

a. Experiment/user-related crew activities shall not be

required during ascent, reentry, or landing operations.

b. The Sortie Lab shall not require the participation of the

Orbiter crew for activities other than to monitor caution

and warning systems and those Orbiter-peculiar experi-

ment requirements such as maneuvering.

c. The Orbiter crew will coordinate Orbiter thruster opera-

tions and venting of onboard gases with the Sortie Lab and

vice versa.

d. Alternating or staggered crew activity periods will be

permitted.

e. Continuous work periods of more than four hours without

a break should be avoided.
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f. The experiment/user crew shall perform limited onboard

status checks.

g. Preflight adjustment to the crew's work/rest relationship

may be dictated by payload requirements. (Certain pay-

loads may require experiments to be performed at a time

when, if the crewman were on the ground, he would be

asleep.)

h. Variations in the crew day are permissible to accomplish

operational or scientific objectives.

(1) Sleep period can be shortened in order to accomplish

experiment objectives.

(2) Eating periods should not be rigidly scheduled.

(3) Breaks can occur at any convenient time.

i. The crew day is designed for a mission length of 7 days

nominal. Longer missions will require additional con-

siderations.

j. The Sortie Lab experimenter/user crew complement shall

consist of up to four members, with not more than three

active in the Sortie Lab at any one time.

5. 1. 1. 2 Representative Payload Operations and Support Requirements

Resource requirements necessary to support on-board opera-

tions are primarily dependent upon the schedule of crew and experiment

operations for each particular payload.

Baseline Sortie Lab resource characteristics available to the

payload are summarized in Table 2.5-1. A number of experiment opera-

tions timelines have been generated in order to drive out typical resource

requirements for the payloads and to indicate the extent of payload ex-

periment operations available under any constraints such as target

availability and conflicting crew/equipment activity.
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Experiment operations timelines were determined based on

1972 data. The principal source of data for this task was the Experiment

Payload Definition report. A total of 47 payloads were defined in this

report for the Sortie Lab Phase B study.

Representative payloads were selected from each experiment

discipline. The payloads were selected for analysis based on maximum

requirements for manhours, power, energy, data acquisition rate and

total data stored.. The distribution of the 47 payloads among the eight

disciplines and the payloads selected for analysis are presented in

Table 5. 1-2. Twenty-five payloads were selected for analysis.

NUMBER OF PAYLOADS

DISCIPLINE
DEFINED FOR SORTIE SELECTED

LAB STUDY FOR ANALYSIS

Earth Observations 9 4

Communication/Navigation 1 1

Astronomy 7 3

Materials Science 4 1*

Technology 9 1**

Planetary 1 1

Space Physics 14 14

Life Sciences 2 0

TOTAL 47 25

* All four payloads combined into one payload for analysis

** Two payloads combined into one payload for analysis.

TABLE 5. 1-2. SORTIE LAB PAYLOADS
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Four payloads were selected for Earth Observations: Land Use

Mapping (EO-2) to maximize power and crew hours; Pollution (EO-3) to

maximize number of experiment performances; Ocean Resources (EO-6)

to maximize area c6verage and Atmospheric Cloud Physics (EO-7) be-

cause it represented the non earth-pointing Earth Observations payloads.

Only one payload was defined for the Communication/Navigation discipline

and hence, was used in the analysis. In Astronomy, three payloads were

selected - Solar Spar (A-2), the combined Photoheliograph (A-l) and Solar

Spar, and the Stratoscope III (A-3). The Solar Spar and Stratoscope III

payloads were originally selected to represent the solar and stellar areas.

Later, the IM Photoheliograph and Solar Spar were combined into one

payload because it was scientifically desirable.

All four of the Materials Science payloads were combined into

one for this analysis because their individual requirements were rather

low. In Technology, the Contamination Measurement (T-1) and Monitor

(T-2) payloads were combined, again because.the individual requirements

for crew and subsystem support were minimal, and because the data from

the two payloads were mutually complementary. Only one Planetary pay-

load was defined, the Intermediate Size Planetary Telescope. This payload

was included in the analysis because of the long duration pointing and

stability requirements. All 14 payloads defined for Space Physics were

included in the analysis because of the variety of subdisciplines and sup-

port requirements required. A representative sequence of activities to

be performed during a typical Life Sciences mission was not defined;

therefore, crew and experiment operations timelines could not be generat-

ed.

Operations models of each of the above described payloads

were developed for use in the analyses.

Representative schedules of activities were generated for

each of the selected payloads. In addition, crew and experiment time-

lines, and resource utilization histories were developed (Table 5. 1-3).
The results of the Experiment Operations Timeline analysis are summari-

zed in Figure 5. 1-1.
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EXPERIMENT OPERATIONS CREW UTILIZATION ELECTRIC POWER

PERFORMANCES OPERATING TIME MANHOURS (TOTAL/MISSION) POWER (WATTS) ENERGY (KWH)SISCIPLINES/PAYLOADS (HOURS)

REQUIRED SCHEDULED REQUIRED SCHEDULED AVAILABLE REQUIRED SCHEDULED AVG PEAK AVG MISSION
OPERATING (W) (MIN) DAILY TOTAL

EARTH OBSERVATIONS

EO-2 LAND USE 11 39 4.6 4.8 132.3 111.5 117.9 4800.0 5700.j MSECS 11.8 62.9
EO-3 POLLUTION 25 34 5.0 3.4 126.0 33.3 44.0C 3000.0 380nn.n MSECS 7.8 38.8
EO-6 OCEAN RESOURCES 20 44 5.0 14.9 132.0 43.0 77.8 2600.0 3100.0 MSECS 12.2 66.1
EO-7 ATMOSPHERIC CLOUD PHYSICS 20 48 40.0 97.0 136.0 60.0 136.0 150.0 2r0.0 60.0 3.4 19.2

COMMUNICATIONS/NAVIGATION

C/N-I 39 71 6.1 11.8 120.0 66.8 38.7 - 6000.0 9548.0 1.5 - 36.R

ASTRONOMY

A-1/A-2 1 M PHG/SOLAR SPAR I 1 149.4 149.4 162.6 92.4 92.4 1110.7 1265.7 50.0 MSEC 25.6

A-2 SOLAR SPAR I 1 149.4 149.4 158.3 72.6 72.6 656.0 792.0 50.0 MSEC 16.5 1036.

A-3 STRATOSCOPE III 1 1 150.6. 150.6 156.8 59.9 59.9 465.0 510.0 1.0 11.1 72.4

MATERIALS SCIENCE

MS/MS-1

MS/MS-2 COMBINEO INTO 130 86 620.0 418.5 288.0 277.8 148.5 3730.0 7730.0 30.0 81.0 485.3
MS/1MS-3 ONE PAYLOAD

n MS/MS-4

.TECHNOLOGY

T-1/T-2 COITAMINATION/MONITOR 41 41 697.0 697.0 144.0 74.2 74.2 470.0 1285.0 16.2 12.1

PLANETARY

P-i INTERMEDIATE SIZE TELESCOPE 15 15 120.0 120.0 117.0 54.5 54.5 578.7 678.7 30.0 11.6 57.

SPACE PHYSICS

SP-1 ATMOSPHERIC AND MAGNETOSPHERIC SCIENCE 1 1 120.0 120.0 144.0 128.0 128.0 690.0 1137.0 1 MSEC 16.6 88.4

SP-2 COMETARY PHYSICS 10 10 10.0 10.0 120.0 30.0 30.0 1600.0 4000.0 18.0 7.7 38.7

SP-3 METEOROID 1 1 112.0 112.0 60.0 10.5 10.5 9.0 60.0 60.0 0.3 1.3
SP-4 SMALL ASTRONOMY TELESCOPES 5 5 80.0 80.0 60.0 42.0 42.0 458.0 1137.0 1 MSEC 8.0 42.2

SP-5 WAKE MEASUREMENTS FROM STATION AND BOOM 1 1 16.0 16.0 24.0 20.0 20.0 438.0 438.0 960.0 7.9 7.9

SP-6 WAKE MEASUREMENTS FROM SUBSATELLITE 1 1 12.0 12.0 24.0 20.0 20.0 300.0 411.0 120.0 3.7 9.7

SP-7 PLASMA RESONANCES 1 1 16.0 16.0 24.0 20.0 20.0 616.0 616.0 240.0 7.5 7.5

SP-8 WAVE PARTICLE INTERACTIONS 2 2 16.0 16.0 48.0 44.0 44.0 345.0 560.0 20.0 9.3 14.1

SP-9 ELECTRON ION BEAM INJECTION 2 2 16.0 16.0 48.0 32.0 32.0 340.0 774.0 20.0 8.4 13.6

SP-10 COSMIC RAY MAGNETIC SPECTROMETER 1 1 115.0 115.0 60.0 15.0 15.0 100.0 100.0 6900.0 2.4 11.8

SP-11 PLASTIC/NUCLEAR EMULSION 1 1 118.0 118.0 60.0 2.0 2.0 14.0 440.0 10.0 0.3 1.8

SP-12 AIRLOCK AND bOOM EXPERIMENTS 5 5 50.0 50.0 120.0 75.0 75.0 40.0 270.01 6.0 0.4 2.3

SP-13 FLAME CHEMISTRY AND LASER EXPERIMENTS 5 5 50.0 50.0 120.0 100.0 100.0 190.0 510.0 6.0 2.1 10

SP-14 TEST CHAMBER EXPERIMENTS 5 5 45.0 . 45.0 120.0 75.0 75.0 450.0 2615.0 10.2 6.6 34.7

TABLE 5. 1-3. MISSION REQUIREMENTS SUMMARY



DATA HANDLING AND STORAGE

ACQUISITION STORED
DISCIPLINES/PAYLOADS STOCOMMENTS

DIGITAL ANALOG FILM DIGITAL ANALOG FILM
(KBPS) (KHZ) (FRAMES/MIN) (KB) (MIN) (FRAMES)

EARTH OBSERVATIONS AMOUNT OF ANALDG

EO-2 LAND USE 50100.O NONE 67.2 86.3 x 10
7  

NONE 19352 DATA IS GIVE IN
EO-3 PLLUTION 13.3 NONE 7 TERMS OF TOTAL

EO-3 POLLUTION 51300.3 NONE 90 CM/MIN 62.8 x 10 NONE 18.4 x 103 CM TIME DURING 4HICH

EO-6 OCEAN RESOURCES 51300.0 NONE 90 CM/MIN 27.5 x 10
8  

NONE 0.0 x 103 CM DATA IS TAKEN

EO-7 ATMOSPHERIC CLOUD PHYSICS 7.5(1) NOE 19j2.,2 4100 FT NONE 21.0 x 10
4  

INCHES PER SEC

COMMUNICATIONS/NAVIGATION I
203.0 0 1 REEL 35 MM/DAY 16.6 x 105 720.0 5 REELS 35 MM

C/N- 203.0 0.0 ROLL 16 MM/DAY 16.6 x 720.0 5 ROLLS 16 MM

ASTRONOMY

A-I/A-2 1 M PHG/SOLAR SPAR 8.6 NONE 17.7 46.3 x 10
5  

NONE 153.5 x 10
3

A-2 SOLAR SPAR 1.8 NONE 3.7 95.6 x 10
4  

NONE 33.1 x 10
3

A-3 STRATOSCOPE III 2.2 NONE 0.5 11.9 x 10
5  

NONE 4.5 x 103

MATERIALS SCIENCE

MS/MS-i

MS/MS-2 COMBINED INTO 300.0 3300.0 NONE 4.8 x 10
6  

NONE NONE

MS/MS-3 ONE PAYLOAD

Ly3 MS/MS-4

00 TECHNOLOGY

T-1/T-2 CONTAMINATION/MONITOR 105.0 NONE NONE 41.8 x 10
6  

NONE NONE

PLANETARY

P-i INTERMEDIATE SIZE TELESCOPE 3.3 NONE 2.0 13.6 x 10 NONE 1.0 x 10
3

SPACE PHYSICS

SP-1 ATMOSPHERIC AND MAGNETOSPHERIC SCIENCE 391.0 330.0 NONE 16.9 x 10 7200.0 NONE

SP-2 COMETARY PHYSICS 20.0 NONE 160 frames/day 7.2 x 105 NONE 800

SP-3 METEOROID 312.0(2) NONE NONE 1.6 x 102 NONE NONE 1(2BITS PER EVENT

SP-4 SMALL ASTRONOMY TELESCOPES 120.0 NONE 192 frames/day 25.9 x 106 NONE 960

SP-5 WAKE MEASUREMENTS FROM STATION AND BOOM 180.0 20000.0 NONE 10.4 x 10
6  

90.0 NONE

SP-6 WAKE MEASUREMENTS FROM SUBSATELLITE 60.0 NONE NONE 2.6 x 10
6  

NONE NONE

SP-7 PLASMA RESONANCES 700.0 NONE 8 frames/hour 7.6 x 10
6  

NONE 96

SP-8 WAVE PARTICLE INTERACTIONS 30.0 600.0 NONE 17.2 x 10
5  

800.0 NONE

SP-9 ELECTRON ION BEAM INJECTION 120.0 1000.0 NONE 6.8 x 10
6  

960.0 NONE

SP-10O COSMIC RAY MAGNETIC SPECTROMETER 5.0 NONE NONE 21.6 x 10
5  

NONE NONE

SP-11 PLASTIC/NUCLEAR EMULSION NONE NONE EMULSION 1 SHEET NONE NONE NONE

SP-12 AIRLOCK AND BOOM EXPERIMENTS 45.0 NONE 160 frames/day 8.1 x 10
6  

NONE 800

SP-13 FLAME CHEMISTRY AND LASER EXPERIMENTS 2400.0 NONE 160 frames/day 10.8 x 107 NONE 800

SP-14 TEST CHAMBER EXPERIMENTS 65.0 NONE 800 frames/day 4.7 x 106 NONE 4000

TABLE 5. 1-3. MISSION REQUIREMENTS SUMMARY (CONTINUED)



PH - Personal Hygiene SHUTDN - Experiment shutdown

EX - Exercise B - Data acquisition for air pollution

EAT - Eat experiment

S/HK - Systems Housekeeping A - Data acquisition for water pollution
S/HK - experiment

SLEEP - SleepSLEEP - Sleep ANAL - Data analysis/Standby
SETUP - Experiment setup

DAY 1 HOURS 'FROM MIDNIGHT-LAUNCH DATE
* £ 3 0 £0 ' 0I

DAY I HOURS FROM MIDNIGHT-LAUNCH DATE3 14 Is II 0 I ? to 19 0 £ 22t 23 ra

I

L DAY 2 HOURS FROM MIDNIGHT-LAUNCH DATEi14 Is It rI 29 30 So 3 33 34 t

6.0

DAY 2 O SF D AE l

30 . ? 10 .2 1.1 3 .0 41. 8

*Target opportunities in minutes

FIGURE 5. 1-1. CREW AND EXPERIMENT TIMELINE (EO-3)
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DAY 3 HOURS FROM MIDNIGHT-LAUNCH DATE46 4 O St 53 54 5s 56 s, to 99 go

S I I INAL

£" 41 14 !TD

DAY 3 HOURS FROM MIONIGHT-LAUNCH DATE60 6 st 63 64 65 66 a? to Go To F0 re

An NP ET I S M P

Z " e t t

"'J "I t t
4 2 0.6 2.4 17.J

,, DAY 4 HOURS FROM MIDNIGHT-LAUNCH DATE

I4 i I II II ) 0 IIt. I I A A4

AtT ; t"
SEIM t t.

FIGURE 5. 1-1. CREW AND EXPERIMENT TIMELINE (EO-3)

5 -10

DA- 4 HOURS FROM MIDNIGHT-LAUNCH DATE

.T I -4 P-I

FIGURE 5.1-1. CREW AND EXPERIMENT TIMELINE (EO-3)



DAY 5 HOURS FROM MIDrNIGHT--IAU JNCH-.1 r)A 
$1 l0 8 9 100 If, I ID? 103) 105 Itr . (1

r ,, N l *8

il) o A Ii I I 1 12 11 3 11 I i I1 I-- 1 1 1 1 1 0

4 i, . 1 55 41 1..

a ' H

1 N7 123 127 13 1?' 126 1 27 2A Ip. 130 1 31 1e2

LA5 01

1; -
1 V sf

S AR 1 A1 L 22 123 I I24 11 lOG 127 L4 17 li iS 1i 1 ll

1 1A 4 1 9 S. 1f 2 193 5e 1 S5

FIGURE5.1-1. CREW AND EXPERIMENT TIMELINE (EO-3)
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At the conclusion of the experimentation period deactivation

of the Sortie Lab is performed (if required) and the vehicle is configured

for reentry (see Table 5. 1-4).

FUNCTION SEQUENCE REQUIREMENTS/REMARKS

FLIGHT OPERATIONS - DEACTIVATION aT l 3 hr

Deactivate Data Management System

Initial C&D Console Deactivation

Initial C&W Deactivation

Visually Inspect Sortie Lab

Return ECS Control to External

Return EPS Control to External

Turn Off General Illumination Lighting

Turn On Entry Lights

Close Sortie Lab Hatch and Lock

Turn Off Sortie Lab Initial Entry Lights

Close Tunnel Hatch and Lock

02 and N2 Supply Valves to Closed This ensures 02 and N2 regulators not pressu-
rized during reentry. Commanded fron Orbiter.

Retract Sortie Lab Radiator Must be completed prior to cargo doors close
to prevent damage to radiator, lab,. or pallet.

Close Cargo Bay Doors To protect Lab during reentry.

Return ECS to Preflight Configuration

TABLE 5. 1-4. FLIGHT OPERATIONS - DEACTIVATION

5. 1.2 Reentry

From the mission operations viewpoint, the main influences

of reentry on mission planning are landing at the desired landing site,

which together with the ranging capability of the Shuttle, determines

the deboost opportunities during the mission; the thermal integrity of

the vehicle, which determines the characteristics of the deboost transfer

orbit to atmospheric reentry and which may require pre-deboost

attitude maneuvers for thermal conditioning of the orbiter; the structural

integrity of the vehicle upon landing, which affects the landed payload
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weight; and the stability of the orbiter during aerodynamic maneuvers,

which affects the allowable payload CG location during entry (and ascent,

because of possible emergency abort and landing).

Discussing these in order, the orbiter currently has a cross

range capability of + 1085 n.mi. and a downrange capability of 5475

n.mi. + 1000 n.mi. from 400, 000 ft altitude. The deboost maneuver

must be initiated at the proper time and position in space to interface

with atmospheric entry at the interface altitude of 400, 000 ft with the

proper range to go. In general, the deboost opportunities occur in

groups on successive orbital revolutions, with the number of opportunities

in a group inversely proportional to inclination (strong dependence). and

to altitude (weak dependence). For 28. 5 degrees inclination, there is one

opportunity band per day with roughly six opportunities on consecutive

orbits in the band and roughly 15 hours from the end of one band to the

beginning of the other; for 90 degrees inclination, there are two bands

per day, roughly equally spaced, with one or two opportunities in each

band. The time when deboost opportunities occur must be considered

in deciding when a sortie mission must be terminated to configure for

deboost.

Thermal integrity of the orbiter may dictate up to a maximum

of seven hours of attitude maneuvers for thermal conditioning prior to
deboost, depending on the thermal history of the Orbiter on the particular
mission. In addition, the atmospheric entry trajectory is shaped to
provide flight within the region yielding sufficient crossrange to meet the
once-around crossrange requirements and to provide a favorable

balance between heat rate and total heat load. In order to maintain a
constant heating rate independent of the altitude from which the deboost
maneuver is performed, it is necessary to establish a functional
relation between the velocity and the flight path angle at the reentry
interface. Entry at too large a path angle for a given velocity will result
in excessive heating for the thermal protection system (TPS). Entry
at too shallow an angle will result in uncontrolled skipping of the tra-
jectory. The target line represents an average value between the heat-
ing limit and the skipout condition. It is necessary to target the deboost

5-13



maneuver at the end of the on-orbit operations to intersect the 400, 000
ft. altitude along the target line. A contingency OMS loading of 22 fps
is provided on each mission to avoid depleting the OMS propellant during
reentry.

Considering now the structural integrity of the Orbiter, the
vehicle is designed to land at 180K gross weight at a sink rate of 10 fps
and a velocity of 165 knots. This gross weight corresponds to a 32,000
lb payload. Larger payloads can be landed at lower sink rates and
higher touchdown speeds. However, there is an operational risk in
landing with larger than the design payload, and the Sortie Lab is
designed for a landed weight not to exceed 32, 000 lbs.

Finally, the requirement for aerodynamic stability throughout
entry, landing approach, flare, and touchdown sets limits on the gross
vehicle CG range in all three axes (limits depend, of course, on the
Shuttle Orbiter aerodynamic configuration and other factors). Given
the Shuttle landing CG and landing weight, this range for the gross
CG can be translated into payload CG limits in X, Y, and Z axes as a
function of payload weight.

The X and Z CG limits are the most constraining on theSortie Lab and are shown inFigures 4-6 and 4-7 of JSC 07700, Volume
XIV, "Space Shuttle Payload Accommodations, " dated April 13, 1973.
As mentioned, the Sortie Lab payloads must also conform to this CG
range during ascent since, in case of abort during ascent, the vehicle
goes through atmospheric glide, landing approach, flareout, etc., in
the process of returning to and landing at the launch site in either
suborbital return to the launch site abort or once-around the earth
abort.

5. 1.3 Critical Operations

Sortie Lab experiment operations are conducted with theSortie Lab in the Shuttle Orbiter cargo bay, therefore, both the Sortie
Lab and Orbiter operations are critical to mission success. Guidance

and Navigation functions are provided by the Shuttle Orbiter. Pointing
accuracy and stability control exceeding the capability of the Orbiter
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is provided by the Sortie Lab/Payload. Electric power and communi-

cation/data facilities are available from the Orbiter. The environment-

al control functions are provided by both the Orbiter and the Sortie

Lab. A checkout console is located in the Orbiter and a monitor console

is located in the Sortie Lab. The operation of all of the above subsystems

is critical in the successful completion of the on orbit payload operations.

In addition to those listed above, contamination must be con-

trolled to insure the integrity of the scientific data.

Specific on orbit operations (if necessary) that have been

identified as being critical to experiment operations include but are not

limited to the following:

* Sortie Lab activation

* Sortie Lab radiator deployment

* Airlock operation

* Boom deployment/retraction

* Lens cover removal/replacement

* Controlled venting/thruster firing

* Gimbal Ope rations

* CMG Spin-Up

5. 2 Ground Operations

The current Sortie Lab ground operations operational process-

ing flow, as shown in Figure 5.2-1 is based on the processing of Sortie Lab

experiment elements, experiment modules and pallet sections, and accomp-

lishment of experiment integration activities at a central integration site,

a facility located away from the launch site, and the processing of the

support module and accomplishment of integrated Sortie Lab checkout at

the launch site.

Detail descriptions of the current Sortie Lab operational pro-

cessing concepts and activities are presented in the Spacelab Ground

Operations Plan, MSFC Document 68M00032 dated October 23, 1973 and

the Spacelab Ground Operations Guidelines and Groundrules dated October

27, 1973. These documents identify and describe the significant Sortie
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14.0 6.0 7.0 8.0 13.0
POST-EXPERIMENT SORTIE LAB

STAGING EXPERIEXPERIMENT -EXPERIMENT SORTIE LAB OVERHAUL
AREA INTEGRATION INTEGRATION VERIFICATION & TESTS
ACTIVITIES VERIFICATION

12.0
SUPPORT MODULE

OR REFURBISHMENT

EFERENCE 9.0 10.0 REFERENCE 11.0 & TEST

S - LAUNCH POST EXP. MODULE
SHUTTLE SHUTTLE OPERATIONCH FLIGHT FLIGHT PALLET

INTEGRATION OPERATIONS OPERATIONS OPERATIONS REFURBISHMENT
& TESTS

REFERENCE

SHUTTLE
REFURBISHMENT

FIGURE 5.2-1. SORTIE LAB OPERATIONAL PROCESSING FLOW

Lab operational processing requirements, guidelines, and groundrules;

and provide a detailed summary of the operational activities associated

with the routine between mission processing of Sortie Lab hardware in-

cluding applicable Shuttle Orbiter interfaces and processing activities.

Sections 5. 2. 1 through 5. 2. 5 identify and briefly describe the

prime activities of the Sortie Lab ground operations. These activities

are based on the nominal operational phase processing of a split module

Sortie Lab consisting of a standardized flex tunnel, support module, ex-

periment modules and pallet sections.

5. 2. 1 Payload Carrier/Payload Integration

This operation is defined for the purpose of ground operations

analysis as consisting of the assembly of Sortie Lab experiment elements,

the installation of experiments and experiment support hardware on these

elements, and post-experiment installation checkout of the assembled

experiment package. These tasks would normally be accomplished at

the central integration site; but could be accomplished, in whole or

part, at a user location as depicted in Figure 5. 2-2.

Experiment post installation checkout operations include those

unique experiment activities associated with experiment post installation

operational checkout, alignments, and servicing which will normally be

accomplished through the use of experiment user provided experiment

support equipment.
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APPROACH SORTIE LAB PROVIDED ELEMENTS USER INVOLVEMENT -USER FACILITY INTEGRATION

NOMINAL * VERIFY CENTRAL
F EXPERIMENT INT INEGRATION LAUNCH

(REF.) OPERATION I SITEEXPERI-
METS

ALTERNATES

* EXPERIMENT MODULES * INSTALL AND VERIFY MODULES

I EXPERIMENTS CENTRAL LAUNCH
4PALLETS INTEGRATION SITE

I VERIFY EXPERIMENT I SITE
* GSE & SIMULATORS MODULE/PALLETS PALLETS

I I
I I
I . INSTALL AND VERIFY RACKS

2 * EXPERIMENT RACKS I EXPERIMENTS I CENTRAL
INTEGRATION SITELAUNCH

* GSE VERIFY EXPERIMENT SITE
MODULE/PALLETS EXPERI-

MENTS
I I

* EXPERIMENT MODULE I e INSTALL AND VERIFY MOD LESEXPERIMENTSi
3 PALLETS N LAUNCH

S VERIFY EXPERIMENT
SGSE & SIMULATORS I MODULE/PALLETS PALLETS

I I
I I

FIGURE 5.2-2. ALTERNATE EXPERIMENT INTEGRATION
APPROACHES

Following completion of experiment installation and post-in-

stallation checkout operations the assembled experiment related elements

will be mated with the support module simulator for power-up verification

of the assembly and interface verification. This interface verification will

include validation of all systems and experiment interfaces mated during

experiment module and pallet assembly and experiment installation, and

will accomplish those checks necessary to validate experiment compliance

with man/machine interfaces and safety requirements. Following com-

pletion of these operations the experiment flight hardware elements will

be prepared for transportation and moved to the launch site for mating
with the support module and accomplishment of integrated checkout.

5. 2. 2 Prelaunch Operations

This operation begins with the receipt of the assembled experi-

ment elements at the launch site (ETR) and includes the installation of the
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support module and flex tunnel on the experiment module, the accomplish-

ment of integrated Sortie Lab checkout, the servicing of non-time critical

items and installation of the Sortie Lab in the Shuttle Orbiter.

Integrated Sortie Lab checkout activities involved include the

loading of the flight software, the verification of support module-to-experi-

ment module interfaces, and final operational checks of Sortie Lab systems

and experiments including pressure seal integrity tests and weight and/or

center-of-gravity checks on selected payloads. Following completion of

this testing, which will be accomplished in the Sortie Lab assembly area,

the assembled Sortie Lab will be moved to the Shuttle Orbiter integration

facility where installation in the Orbiter cargo bay and integrated Sortie

Lab-to-Shuttle Orbiter interface verification will be accomplished.

Sortie Lab-to-Shuttle Orbiter interface verification will con-

sist of an operational check of each electrical, data, fluid and mechanical

interface and will include a leak check of the flex tunnel-to-Shuttle Orbiter

pressure seal. These test activities will be limited to that effort necessary

to verify interfaces and critical functions only, (in particular, all Sortie

Lab to Shuttle Orbiter monitor, command, and support functions) and will

not include an operational verification of each Sortie Lab system or experi-

ment.

5. 2. 3 Launch Operations

Sortie Lab activities during vertical Shuttle Orbiter processing

will be limited to support of the Shuttle Orbiter testing, cabin closeout and

final servicing, the monitoring and pre-launch activation of selected Sortie

Lab systems and/or experiments, and the loading of the Sortie Lab flight

crew into the Shuttle Orbiter.

Sortie Lab participation in the Shuttle Orbiter testing will in-

clude a limited reverification of critical Sortie Lab-to-Shuttle Orbiter

interfaces and limited validation of selected caution and warning and dis-

play system functions. Final servicing will include the loading of time-

critical experiment samples, and the servicing of fluids, gases or cryo-

genics.
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5. 2.4 Post Flight Operations

Sortie Lab activities associated with Orbiter recovery opera-

tions include the safing and securing of Sortie Lab systems and experi-

ments, the initiation of ground support functions (purges, thermal condi-

tioning, ground power, etc. ), the recovery of time-critical experiment

and flight data, and the removal of Sortie Lab from the Orbiter cargo

bay. Additional activities planned for this operation include the return

of the Sortie Lab to the Sortie Lab Assembly Area where the flex tunnel

and support module would be demated and the experiment elements pre-

pared for return to the Sortie Lab central integration site for. disassembly

and maintenance.

5. 2. 5 Maintenance and Refurbishment Operations

Sortie Lab maintenance operations include those activities

associated with rework or repair of Sortie Lab elements following use.

Included in the current Sortie Lab operational processing concepts are

maintenance activities, refurbishment and overhaul, which are defined

in the following paragraphs.

Refurbishment is defined as the routine servicing of Sortie

Lab hardware following each mission. This operation will include the

replacement of failed or marginal line replaceable units (LRU's) based

on the results of visual inspections and flight data evaluations, the

verification of repairs and replacements made, and nominal post-mission

servicing and cleaning activities.

Overhaul is envisioned as an extensive maintenance operation

which will be used for reconditioning of Sortie Lab hardware, primarily

the support module systems, after a specified number of operational

hours, cycles or missions. This activity will include the removal of

systems for bench level servicing and functional checks, the rework

and repair of structural elements, the re-installation of reworked,

repaired, or new hardware, and performance of a complete end-to-end

acceptance test of the assembled systems. Overhaul requirements for

the Sortie Lab sub-systems or modules that need not be performed off-

line will be performed, when possible, during Sortie Lab refurbishment/
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maintenance operations. This does not preclude a phased maintenance

approach where maintenance activities may differ from one turnaround

cycle to another.

Basic to the Sortie Lab maintenance approach is the philosophy

that refurbishment and overhaul activities will follow a predetermined

processing plan which will schedule these activities based on ground

test information obtained during previous element maintenance and
buildup activities; established maintenance schedules for repair,

replacement and/or servicing of time and cycle-critical components or
systems; and flight data from the previous mission. Of prime importance
to the current maintenance concept is the use of Sortie Lab flight data
as a basic source for identification of Sortie Lab systems and component
maintenance requirements and the accomplishment of trend analysis.
This use of flight data is envisioned to eliminate or minimize the
requirement for post mission operation of Sortie Lab systems to establish
operational status information or accomplish fault isolation of failures.
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6. O EXPERIMENT INTEGRATION

A task was initiated to define a Sortie Lab Experiment Integra-

tion Plan. During the development of the plan, integration approaches

used by other programs and major operational test facilities were in-

vestigated for useable information. Experiment Integration was defined

and an integration process was tentatively recommended. A draft of the

Preliminary Plan was released and its contents are summarized in this

section.

6. 1 Definition of Experiment Integration

Experiment Integration is defined as those Sortie Lab orogram

activities that are performed to assure physical and functional compatibility

of all elements of experiments with the Sortie Lab, with other experiments,

with GSE, with ground and flight operations, and with operations personnel.

6. 2 Experiment Integration Plan

The preliminary plan described below was based upon trade

studies, experience gained on other programs and the Spacelab Program

Level I Guidelines and Constraints.

6. 2. 1 Responsibilities

6. 2. 1. 1 Payload Management Lead Responsibilities

The recommended payloads management responsibility func-

tions for the various NASA program offices involved with Sortie Lab are

delineated in Table 6. 2-1.

The Sortie Lab Program Office is responsible for experiment

integration and will work with the Experiment Development Lead Centers

to accomplish this task. Although the integration may not occur at its

facility, the responsibility will remain with the Experiment Integrator.
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SCIENCE A APPLICATION MISSION & PAYLOAD SORTIE LAB PROGRAM SHUTTLE PROGRAM
PROGRAM OFFICES INTEGRATION OFFICE OFFICE OFFICE

Experiments Definition * Experiment Grouping * Sortie Lab and Ancillary * Sortie Lab Integra-
Analysis Hardware Development tion into Shuttle

and Testing

Identify User Requirements a Initial Mission Planning * Detailed Sortie Lab a Shuttle Launch
Mission Planning

Experiment Development * Standard Shuttle * Experiment/Payload a Shuttle On-Orbitand Testing Resource Support Integration into Operations and
Sortie Lab Sortie Lab Support

* Integrated Payload/ * Communication
Sortie Lab Testing to the Ground

Support to Experiment, * User Interface * LandingInstallation and On-
Orbit Operations

Analysis of Experimental * Sortie Lab On-Orbit
Data Operations

Publish and Archive * Ship Experiment EquipmentExperiment Results to User for Refurbishment
and Reuse

DOD Commercial and * Refurbishment of Sortie Lab
ESRO Furnished Ex- and Ancillary Equipment
periments

a Data Processing

* Sortie Lab Peculiar
Interface Requirements

TABLE 6. 2-1. PROGRAM LEAD RESPONSIBILITIES

6. 2. 1. 2 Sortie Lab Program Responsibilities

The NASA headquarters program office within the OMSF shall
provide the overall direction required to plan and implement the Sortie

Lab Program including the experiment integration tasks.

The Marshall Space Flight Center (MSFC) is the Sortie Lab
"lead center" within NASA and is responsible for Sortie Lab utilization,
integration and operations. To achieve maximum program effectiveness
and efficiency it is anticipated that the majority of the Sortie Lab experi-
ment integration will be performed at MSFC.

6.2. 1. 3 Experiment Integrator Responsibilities

The Experiment Integrator is responsible for all analytical,
mockup and other related activities leading to the establishment and veri-
fication of plans and requirements for experiment payload and Sortie Lab
development verification and operation. Experiment integration will be
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accomplished under the direction of an experiment integration manager

who will be responsible for the analytical activities including tracking and

control of each experiment payload.

The role and relationships between the experiment integration

functions and other related activities is portrayed in Figure 6. 2-1. Al-

though experiment installation and checkout is not performed within the

experiment integration function the Experiment Integrator interfaces with

the operations engineering function on matters relating to policy and levies

requirements for installation and checkout of the experiment payload.

EXPERIMENT INTEGRATION

LXP. APPROVAL INTEGRATION EXPERIMENT EXPERIMENT EXPERIMENTS/ AROND FLIGHT
TO PAIIOAD REPIREMENTS DESIGN AD FABRICATION COMPATIBILITY OPERATIONS OPEYA2VT GPGR DP IMPOSITION DEVELOPMENT & VERIFICATION ASSURANCE

GR 
P MOPERATIONS

SORTIE LAB SORTIE LAB
& GSE & GSE
DESIGN 1 PRODUCTION
D& EVELOPMENT & VERIFICATION

FIGURE 6. 2-1. EXPERIMENT INTEGRATION ROLE

6. 2. 2 Experiment Integration Approach

The overall objective of the experiment integration approach

will be to minimize program cost and optimize scientific returns by:

a) Standardization of experiment to Sortie Lab structural,

electrical, and other connections and attachment

interfaces.
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b) Keeping documentation to the minimum level necessary

to assure safety and Sortie Lab/experiment compatibility.

Keep burden of document preparation on the Experiment

Integrator.

c) Foregoing repetitive functional test of individual experi-

ments, by giving the Experiment Development Lead

Centers sole responsibility for design, fabrication,

qualification and functional operation of experiments.

d) Using established organizations and existing facilities

and equipment to the maximum extent feasible.

e) Assigning within the Sortie Lab Program Office an experi-

ment integration manager responsible for the overall

integration of each payload and experiment integration

engineers to support the integration of individual experi-

ments.

f) Utilizing when warranted relatively low cost mock-ups

and simulators to verify concepts and identify interface

and procedural problems early in the experiment in-

tegration cycle.

g) Providing for laboratory support and on-the-spot modi-

fications and adjustments when experiment problems

arise during installation and checkout.

h) Keeping the experimenters in the loop throughout the

integration phase.

i) Continuously making an agressive effort to reduce and

simplify the integration process and requirements through

the introduction of innovative techniques. Initially familiar

integration concepts will be used, however, as experience

increases innovative techniques are developed, and incor-

porated to bring the process to maturity.
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Coordination and control of the experiment integration effort

will be accomplished primarily through frequent informal contacts be-

tween the experiment integration manager and all participants, scheduled

reviews, and interface control.

6. 2. 2. 1 Schedule Management

Master schedules depicting the time phased experiment in-

tegration activities for each payload will be developed and maintained.

Experiment Integration schedules will be coordinated with

the appropriate Experiment Development Lead Centers, JSC, operations,

and the launch site representatives.

6. 2. 2. 2 Configuration Control

Configuration control of individual experiments will be the

responsibility of the Experiment Development Lead Centers. The Experi-

ment Integrator will accomplish interface control of experiment to

Sortie Lab interfaces through Configuration Control Boards.

6. 2. 2. 3 Documentation

Documentation will be kept to the minimum necessary to

accomplish the integration effort. The burden of writing and distri-

buting experiment integration documentation will be upon the Experiment

Integrator. The experimenters will provide information as required and

in certain cases will be required to concur with a document prior to re-

lease.

6.2.2.4 Simulation

The approach will be to effectively utilize mock-ups and

breadboards when needed to provide early payload concept verification,

fit and clearance verification, and training aids. Breadboards and

experience developed in the Concept Verification Test (CVT) program

and during the ESRO Spacelab Development Program will be utilized to

the fullest extent in the experiment integration effort.
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6. 2. 2. 5 Safety

Safety activities conducted during Experiment Integration

will include both flight and ground operations safety.

In the complexity of the experiment hardware so requires,

a Hazards Analysis will be accomplished by the Experiment Integrator.

It is anticipated that lists of approved commerical equipment

will be provided Experimenters and that the Experiment Integrator will

assist the experiment developer in the area of materials compatibility.

When required the Experiment Integrator will conduct special

safety studies including structural analysis and define and conduct special

safety tests such as proof tests of pressure vessels.

Safety will be one criterion applied to acceptance and grouping

of experiment payloads for Sortie Lab missions. Therefore, the Experiment

Integrator will assist in performing preliminary safety analysis when re-

quired to define potential hazards and means of elimination or reduction

of hazards prior to selection of experiments.

6.2.3 Integration Process

Figure 6. 2-2 depicts a typical unabridged payload build-up

sequence as envisioned during the operational phase of the Sortie Lab Pro-

gram, when modules and pallets are already in the depot inventory. The

task relationships between the Experiment Integrator and the experimenters

are also shown. A payload may include many experiments and may involve

several centers. For purposes of illustration, a formal design review pro-

cess is depicted for both experimenter and Experiment Integrator.

6. 3 Approaches Used by Other Program and Test Facilities

Major findings and conclusions from studying the Experiment
and Facility Integration procedure of other programs are summarized
below.
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6. 3. 1 Convair 990 (Assess Program)

The similarities between the Sortie Lab and Convair 990() pro-
gram are:

* Multidisciplinary nature of experiment payloads

* Carry on experiments are accepted

* Several missions in various stages of development

concurrently in progress.

The Convair 990 integration plan had the experimenter in-

volved in all aspects of the mission. The experimenter had total responsi-

bility for successful operation of experiment. The only constraints were

aircraft availability, flight safety, available electrical power, and the

aircraft environment. Experiment integration from the program side

involved payload grouping, assigning a point of contact and maintaining

the flight operations and installation facilities.

Each CV 990 mission begins with a pilot proficiency flight,

which serves as a check on aircraft maintenance and allows the flight

crew to evaluate any new installation pertinent to aircraft operations.

The second flight, normally a local flight, provided an initial operational

shakedown of the various experiments and an opportunity for new experi-

menters to become accustomed to the aircraft environment. Subsequent

flights are the data flights to meet mission objectives.

Minimum documentation, physical proximity of all facilities
and the single point of contact assigned throughout the mission contribute
to quick turn-around and minimum schedule impact.

User involvement and user responsibility for the experiment
equipment are applicable to the Sortie Lab Program. A more thorough
integration and checkout process prior to flight will be required for Sortie

Lab, however, the cost of a Shuttle flight prohibits shakedown flights.
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6. 3. 2 Skylab

Skylab's experiments are good examples of the types to be

carried on the Sortie Lab. However, since Skylab was a one-payload program,

the experiments and carrier were designed and fabricated simultaneously

which required a large, new integration effort. The Sortie Lab payloads

will generally be designed to be compatible with the carrier since it is

a general purpose lab which should allow a simpler method.

The Skylab program provides an excellent source for the

areas which should be considered in Experiment Integration.

6.4 Experiment Integration Trade Studies

Trade studies are in progress to define the best locations for

accomplishing the integration efforts for each type payload. Also, options

within the integration process are being identified and traded.
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7.0 SYSTEM SAFETY

The Sortie Lab system safety effort will be a planned and

coordinated program which is an integral part of all phases of develop-

ment.

The system safety program will be implemented on all Sortie

Lab systems, subsystems, operations, experiments and support equip-

ment. The objectives of this program are:

- To develop safety criteria and requirements for the

design of the Sortie Lab and experimental payloads.

- To systematically identify hazards/undesired events

within the Sortie Lab and inherent to the experimental

payloads that could lead to death or injury to personnel,

system loss or damage.

- To identify corrective action to eliminate or reduce the

likelihood or occurrence of the hazards/undesired

events.

- To provide management visibility of hazards/risks

being incurred in program activities and the accept-

ability of these hazards/risks.

7. 1 Sortie Lab Safety Philosophy

The Sortie Lab system safety program is based on the follow-

ing philosophies:

* Safety is a primary consideration throughout the total

project.

* The Sortie Lab design and operation shall be compatible

and consistent with safety requirements of the Space

Shuttle Orbiter.
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* Safety considerations shall be in the following order:

- Crew safety

- Orbiter safety

- Sortie Lab safety

- Experiment safety

e The Sortie Lab System Safety Program shall be designed,

developed and conducted in an efficient and economical

manner.

* In implementing the Sortie Lab System Safety Program

the outputs from interfacing disciplines (Design, Reliability,

Quality, Test, etc.) shall be used to prevent duplication

of effort and aid in achieving low cost.

* Safety documents shall be updated and revised whenever

new data and information concerning system performance

and operation must be incorporated.

* Hazard analysis of the Sortie Lab, subsystems, operations,

experiments and support equipment shall be conducted to

identify hazards within these elements, and between inter-

acting elements, for the purpose of their elimination or

control.

* Hazards, as defined by NASA SPD-1A, shall be eliminated

or controlled by means of safety devices, warning devices,

or procedures. Controlled hazards and other remaining

hazards shall be identified as residual hazards with the

risk involved and rationale for acceptance provided in

the Project Hazard Summary.

* Capability shall be provided for performing critical

functions at an emergency level for Sortie Lab areas

occupied by crewmen until the affected function can be

restored or the crewmen evacuated to a safe area.
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* Safety activity will be implemented consistent with pro-

ject phase and level of definition.

* When changes are proposed for equipment design or pro-

cedures, a thorough review shall be performed for the

proposed configuration to identify and resolve possible

hazards that may be introduced by the change into the

system.

* The Sortie Lab shall meet the safety requirements

established by the Air Force Eastern Test Range

(AFETRM 127-1) and the Air Force Western Test

Range (AFWTRM 127-1). Waivers or deviations to

these requirements must be identified and justified.

* On- the-ground safety or any non-flight safety equip-

ment required shall be supplied as part of the GSE.

* The Space Shuttle Orbiter is the safe refuge for all

personnel while in orbit. Egress route from the Sortie

Lab to the Orbiter shall have a shirt-sleeve environ-

ment.

7. 2 Sortie Lab Systems Safety Responsibilities

The following are the responsibilities for the Sortie Lab (and

associated GSE) systems safety program:

7. 2. 1 Sortie Lab Developer

Develop a safety plan that defines the general safety

requirements to be considered in the planning and imple -
mentation of the safety program during development.

Define and schedule safety milestones, such as com-

pletion date of safety plan and analyses.

Establish safety criteria and requirements for the design

of the Sortie Lab.
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Perform hazard analyses to identify all hazards.

Recommend corrective action to eliminate control, or

minimize identified hazards.

Establish hazard tracking procedures to assure correc-

tive action recommended has been accomplished.

Provide management visibility of all hazards/risks

during the development of the Sortie Lab, the status of

corrective action and the hazard level of residual hazards.

7. 2. 2 NASA/MSFC

- Assure that the Sortie Lab Level I Guidelines and Con-

straints are observed. These guidelines state, in part,

that:

The Sortie Lab will have specific equipment, devices and

procedures:

(a) to protect the Sortie Lab, Space Shuttle and crew from

whatever hazards may be generated by the research

and applications experiment activities.

(b) to relieve the user of as much of the cost of space-

qualifying and man-rating his or her equipment as

practical.

- Provide to the Sortie Lab developer safety guidelines for

the Sortie Lab systems safety program.

- Establish the Sortie Lab systems safety philosophy.

- Develop an overall Sortie Lab Systems Safety Plan.

- Evaluate the Sortie Lab developer's systems safety

documentation.
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Analyze Sortie Lab and experiment payloads for

characteristics, performance and operational

requirements to determine their safety impacts.

Continuously evaluate Sortie Lab and experiment

payloads as they are defined and developed.

Perform gross hazard analysis of Sortie Lab and

experiments to identify potential safety hazards

to the Orbiter, Sortie Lab and crews. Perform

safety analyses of Sortie Lab ground and flight

operations.

Determine the Shuttle safety requirements.that

apply to the Sortie Lab.

Develop safety criteria and requirements consistent

with Sortie Lab and experiments and their operation.

Analyze Sortie Lab and experiment payload design

concepts and designs for implementation of safety

criteria and requirements.

Assure safety requirements are met during integra-

tion of experiment payloads into the Sortie Lab.

Perform safety analysis on MSFC peripheral equip-
ment.

7. 3 Accomplishments

MSFC has accomplished the following safety tasks since the
inception of the Sortie Lab Program:

7. 3. 1 Sortie Lab

- Determined safety guidelines for the Sortie Lab systems
safety program.

Established the Sortie Lab systems safety philosophy.

- Developed the Sortie Lab Systems Safety Plan.
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Initiated a study to determine the Shuttle safety require-

ments that apply to Sortie Lab.

Prepared a preliminary top-level hazard analysis for

Sortie Lab.

Prepared an initial list of safety requirements used in

defining the S&E autonomous Sortie Lab, its subsystems

and configuration.

7. 3. 2 Sortie Lab Experiment Payloads

- Determined performance and operational characteristics

of equipment hardware as presently defined in the follow-

ing experiment disciplines:

* Astronomy

* Solar Physics

* High Energy Astrophysics

* Atmospheric and Space Physics

* Earth Observations

* Earth and Ocean Physics

o Space Processing Applications

* Communication/Navigation

* Life Sciences (includes Teleoperator)

a Space Technology

- Developed working relations with other organizations in

each of the above discipline areas.

- Prepared an initial experiment payloads hazards list

based on data from other MSFC organizations.

- Compiled a preliminary list of experiment safety criteria

and requirements.
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7.4 Other Safety Activities

The foregoing philosophy, responsibilities and accomplish-

ments are related to specific safety activities performed as part of an

overall system safety effort. However, there are other aspects of the

Sortie Lab program that are performed for non-safety activities but that

have safety as a consideration during the effort. Some of these are trade

studies, configuration selection criteria, ground operations and design

efforts. Examples from these four areas are provided below.

7.4.1 Trade Studies

* Methods for emergency EVA egress and rescue opera-

tions from the Sortie Lab were studied for three Sortie

Lab configurations.

- Sortie Lab with scientific airlock

- Sortie Lab with no airlock

- Sortie Lab two-man airlock

Data from the study was submitted for management decision.

* Deployment versus nondeployment of the Sortie Lab

was studied for three cases:

- The deployed Sortie Lab concept

- The nondeployed Sortie Lab concept

- The deployed radiator configuration of the non-

deployed concept

The results of the study indicated that a deployed radiator

and a nondeployed Sortie Lab be selected as the baseline concept.

* Other studies that have been performed that have appli-

cations to safety are:

- Advantages and disadvantages of a fail safe,

crack-stopper shell with a conventional ring-

stringer shell.
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Conclusion:

Fail safe construction provides a structure with

a much higher fatigue life than conventional ring.

stringer construction. However, it is not yet

certain that the Sortie Lab will require such a

high fatigue life.

Meteoroid protection analyses of the conceptual

designs of the Sortie Lab

Conclusion:

Analyses submitted for management consideration.

Feasibility of high inclination Shuttle flights from

the Eastern Test Range (ETR). (This study was

motivated by the Western Test Range (WTR) being

unavailable for accommodating high inclination

missions for the Space Shuttle/Sortie Lab program

until 1983.)

Conclusion:

South polar launches are not possible without exceed-

ing acceptable sonic boom levels or land overflight.

If it is decided that, because of the intact abort

capability of the Shuttle, overflight of the Continental

United States is allowable during Orbiter alone flight,

then northerly flight of the Shuttle would be feasible

during the operational phase without encountering

land impact of the SRB or excessive sonic boom levels.

7.4.2 Configuration Selection Criteria

The safety criteria and rationale for selecting the Sortie Lab

configuration are provided below:

* Ease of rescue: Chances of rescue are enhanced as sys-

tem becomes more passive (Level I guidelines indicate

that rescue without EVA will be provided)
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0 Rapid egress: Ability to escape a dangerous area quickly

improves chances of survival.

* Minimal Interfaces: Seals are potential sources of failure.

* Minimum Exposure to Meteoroids: Probability of puncture

increases with exposed surface area.

7.4. 3 Ground Operations

The Spacelab Ground Operations Plan and the Spacelab Ground

Operations Guidelines and Groundrules documents contain several provi-

sions that are related to safety:

* The servicing of Spacelab hardware following installation

in the Shuttle Orbiter will be limited to those items which

are time or safety-critical.

* All Spacelab systems shall include provisions for deacti-

vation and monitoring as required to assure personnel and

hardware safety. Design of the Spacelab should consider

the maximum possible isolation of the flight systems in

the event of a lightning strike during ground operations.

* Mating surfaces and seals will be designed to eliminate the

need for conducting vacuum chamber or proof pressure

testing during the operational phase. Pressure seals be-

tween elements (experiment modules, support modules,

and flex tunnel) shall be designed so that seal replacement

or refurbishment can be accomplished without disconnecting

related interface electrical or fluid lines. In addition, the

Spacelab structure shall be designed such that seals used

in detachable connections are easily accessible for inspec-

tion, checkout and replacement.

* Where feasible, pyrotechnic devices shall be Category B.*

This will allow for installation and hookup of the pyro-

technic units prior to payload bay door closing in the hori-

zontal configuration.

* Reference, AFETRM - 1270 - Range Safety Manual, U.S.A.F.
Eastern Test Range.
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" Pyrotechnic initiators shall not be susceptible to ignition

in the EMI environment of the Spacelab, the Shuttle flight

vehicle and/or its launch/landing area.

* The design and routing of flight and GSE cables and fluid

lines shall be such that these cables and fluid lines not

pose any obstruction to Spacelab egress or be subject to

damage.

* Pad access shall be limited to those required functions

that must be performed during this period such as the

servicing of time or safety critical items, stowage of

experiment critical samples, etc.. Access to the Space-

lab on the pad shall be limited to the support module/

experiment module for final switch/control setting and

verification. Access to the pallet during pad operations

shall be limited to contingency requirements.

* Provisions will be included inthe Orbiter crew compart-

ment which will provide the capability for safety of flight

caution and warning, Spacelab required command/control

and monitoring of Spacelab system and experiments dur-

ing pre-launch and post-landing when Spacelab access is

not available.

* All platforms, transporters, workstands, hydraulic or

pneumatic GSE, lifting devices and storage fixtures shall

be subjected to a proof load test prior to acceptance. This

requirement is also applicable to all interconnecting hoses

and lines which interface with the GSE.

* Transportable containers of hazardous materials shall

have adequate handles and lids and shall indicate when

they are positively closed. Also, easy-to-recognize

markings identifying contents, antidote information or

special handling notes shall be provided.
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7.4.4 Design Efforts

An example of safety related design efforts was the preliminary

design of a contaminant control system for Sortie Lab. This design effort

was precipitated due to results of preliminary investigations which indicated

that for currently expected contaminants and generation rates, maximum

allowable concentrations (MAC's) of a significant number of toxic contami-

nants would be reached, from zero concentration at launch, within a few

hours thereby posing a threat to the crew of even a seven day mission.

7.5 Conclusions

* The Preliminary Top Level Hazard Analysis indicated that

the Sortie Lab/Shuttle access hatch is a critical safety

area requiring thorough evaluation and test to assure the

final design will provide reliable operation throughout

the mission.

* Since firm experiment payloads definition will lag Sortie

Lab design, considerable flexibility must be incorporated

into the Sortie Lab design to assure safe accommodation

of the experiments.
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8.0 LOGISTICS

8. 1 Logistics Concepts

Logistics support for the Sortie Lab Program entails the

consideration of planning for, and providing elements of support that

will enable the Sortie Lab Program to be accomplished effectively and

economically. Logistics planning begins with preliminary design and

continues throughout the operational life cycle of the Sortie Lab Program.

The support elements include the following:

a. Maintenance

b. Supply Support

c. Support Equipment (GSE)

d. Support Documentation

e. Transportation

f. Packaging and Handling

g. Personnel and Training

h. Support Management

These elements will be examined in an effort to minimize the operational

program costs. Variations in the number of geographical locations where

maintenance, manufacturing, alunch and other functions are performed

have a definite effect on program operational costs. It is presently plan-

ned that maintenance and refurbishment of the experiment module/ pallet

will be performed at the Integration Site. The support module will be

refurbished at the Launch Site. No scheduled in-flight maintenance of

experiments will be performed. The Sortie Lab maintenance turn-around

time is planned to be 21 days.

8. 2 Maintenance Planning

Maintenance Planning to support the Sortie Lab Program will

establish specific policies and procedures for levels of maintenance,

spares, etc. Sortie Lab mission profile time constraints will goven the
required Sortie Lab "Ground Turn-Around" maintenance and refurbish-

ment time cycles.
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8. 2. 1 Maintenance Concepts and Locations

It is planned that the Sortie Lab will require the support of

three levels of maintenance. The Sortie Lab maintenance concept is to

remove and replace or repair in place utilizing minimum repair equipment

other than that normally required for test and checkout purposes. This

concept forms the baseline for the first level of maintenance.

First-level maintenance will consist of "remove and replace"

action to the functional line replaceable unit (LRU) by test and checkout

operations personnel.

Second-level maintenance (repair of removed units) will be

performed at a special facility with the capability for detailed repair work

by mechanics and technicians. Normally second-level maintenance re-

quirements as related to Sortie Lab GSE will be performed at the launch

site.

Third-level maintenance of items and units that have failed

and require major repair may be returned to the applicable Sortie Lab

contractor for appropriate maintenance. It is planned that all GSE failed

items requiring maintenance and not repaired by site personnel may be

returned to the respective Sortie Lab contractor for third-level mainten-

ance.

8. 2. 2 Inflight Maintenance Requirements (IFM)

It is not planned to have any scheduled IFM and very limited

unscheduled IFM on the 7-day missions. Experience derived from previous

space programs indicates this is a practical approach, Necessary replace-

ment of items such as Lithium Hydroxide cylinders will be considered as

crew operational tasks rather than IFM. Moreover, it is a design goal

that such replacement will not require any tools, if possible. Scheduled

IFM tasks and related onboard support may be feasible for the longer 30
day missions, but IFM will only be considered for those tasks which involve

critical equipment where the probability of failure justifies it. The number

of inflight tools required will be minimized if the attaching hardware (nuts,
bolts, screws) for replaceable items is compatible with similar hardware

in the Orbiter. Thus in many cases the same tools can be used for both the
Sortie Lab and the Orbiter.
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8. 2. 3 Refurbishment

Refurbishment of the Sortie Lab will be accomplished at the

Integration Site, which may or may not be at the same location as the

launch site. After the Sortie Lab is removed from the Orbiter and

passivated, the support module will be demated from the experiment module/

pallet prior to refurbishment. The required cleaning, servicing, re-

supplying, removing, replacing, repairing, reworking, modifying and

installing mission peculiar equipment will be accomplished simultaneously

on the separate modules prior to mating and checkout. It is planned to

have highly trained Sortie Lab field engineering personnel (technical

representatives) present for necessary consultation and advice when

refurbishment is accomplished.

8. 3 Supply Support

Supply Support includes the timely provisioning, distribution,

and inventory replenishment of spares, repair parts, and special supplies

such as Sortie Lab element subsystem consumables. The cost of supply

support is directly related to the number of locations where a supply sup-

port inventory of material is maintained. In the concepts under considera-

tion, an emergency supply of spares, as well as subsystem consumables,

will be required at the launch site. Minimizing this investment in emergency

spares can be achieved by utilizing a high-speed transportation system and

a rapidly responsive inventory control system. Accomplishing Sortie Lab

maintenance at the Integration Site has the advantage of fewer locations

for stocking spares and repair parts, and permits keeping stock levels at

an absolute minimum.

An important consideration in supply support entails the cost

of obsolescence of spare parts resulting from incorporation of changes.

Combining activities at the Integration Site reduces the total number of

spares required, and therefore the least number of possible obsolete

parts.
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8.4 Ground Support Equipment

The GSE and facility requirements for the Sortie Lab

program have been identified and are documented in the Spacelab

Ground Operations document. Further definition is required as the air-

borne hardware specifications are developed. GSE end item listings and

usage allocations will be prepared and published as a Spacelab GSE

Allocation Document. Each end item of GSE will be designed and speci-

fied by an end item Design Criteria Sheet, which will specify the over-

all physical and performance characteristics of the GSE. All GSE inter-

face requirements are yet to be defined, but will be defined and documented

in a GSE Interface Requirements Document.

Currently, over 118 major functional items of mechanical and

electrical support equipment have been identified to support the option B

processing flow. This number excludes any Western Test Range require-

ments, which would necessitate an additional 116 like items. These num-

bers are expected to increase significantly when definition to a more finite

level of detail is completed, based on a refined definition of the ground

operations processing flow.

Facility area requirements for the Central Integration and

Launch Facilities have been defined and require approximately 55, 000

and 10, 000 square feet, respectively. These areas include office space,

storage areas, experiment checkout, module integration, inspection,

refurbishment, cleaning, etc.

The MGSE required for the Sortie Lab program has been

functionally identified to the point of end-item identification/description

in the conceptual studies performed to date. Thirty-eight distinct end-

items of MGSE have been identified and specified in the MGSE Configura-

tion and Utilization Concepts Document and Design Criteria Sheets.

Preliminary design and fabrication cost estimates for the first unit of

each MGSE end-item have been prepared. Estimates of those items of

existing MGSE from previous programs which could be utilized in the

Sortie Lab program have also been prepared.
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8. 5 Support Documentation

Support documentation includes all technical data required to

logistically support the operational Sortie Lab program. A major portion

of the task entails the development and distribution of formal documenta-

tion necessary to conduct operations, maintenance, overhaul and structural

repair of Sortie Lab, GSE, Line Replaceable Units (LRU's), and com-

ponents. Technical data provides the link between personnal and equip-

ment. It includes drawings; operating, maintenance and modification

instructions; provisioning and facilities information; specifications; inspec-

tion, test and calibration procedures; instruction cards and equipment

placards; special purpose computer programs and other forms of audio/

visual presentation required to guide people performing operations and

support tasks.

Technical data planning must be based upon information ob-

tained from equipment operations and maintenance planners (e. g., system/

equipment use, design characteristics, operations and maintenance methods

and personnel tasks, frequency and time to repair, supply provisioning and

inventory items and procedures).

The combining of manufacturing, experiment integration, and

maintenance functions at one location reduces support documentation to a

minimum. Formal documentation could be limited to that data required

at the launch site for the operations concerned with the installation of the

Sortie Lab payload carrier. Data to support a combined maintenance and

integration activity at the Integration site can be limited to the data neces-

sary for management of the maintenance program plus an expansion of

the manufacturing and engineering paperwork to include troubleshooting

and checkout procedures.

8.6 Personnel and Training

Skilled personnel are required for manufacturing, experiment

integration, maintenance, and support of launch operations. A training

program utilizing on-the-job training, classroom instruction, and training

equipment is required to achieve the necessary proficiency. The cost of
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the training program is affected by the number of personnel to be trained

and the extent of the training equipment required. The number of personnel

to be trained can be kept to a minimum by transferring the knowledge gain-

ed during manufacturing to the experiment integrati.on and maintenance

operations. The manufacturing and development test programs permit a

high degree of on-the-job training on real hardware, thereby reducing

the requirements for training equipment.

8. 6. 1 Mission Support Team

The baseline concept incorporates an engineering support

team composed of Sortie Lab experienced personnel. The team will be

composed of subsystem specialists and will be centrally located in the

U. S. Team members will be deployed as integration, launch, mission

and post-mission requirements dictate. The team will provide engineer-

ing, procedure, and logistics support.

8.7 Support Management

The support management task entails the organizing, con-

trolling, scheduling, accomplishing, and reporting the status of the

logistics elements in a cost effective manner and in harmony with all

other interfacing programs and systems. An inventory control system

is required to provide' the configurationand maintenance status and the

location of all payloads, Sortie Lab elements, spares, spare parts, and

expendables for purposes of program management. The system must

be supported by a disciplined and accurate configuration control and

documentation system. The requirements for data recording and trans-

mission are such that electronic data processing will be required to pro-

vide timely data for program management.

The cost of the inventory control system is related in part to

the number of locations where material is located. Minimizing the num-

ber of separate spares locations as well as the number of locations for

Sortie Lab elements and payloads will result in minimum cost inventory

control system.
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Consolidating the Sortie Lab program functions of experiment

integration, and maintenance at one location permits development of effi-

cient management techniques. The shorter communication lines permit

rapid reaction and response to program contingencies. Scheduling

problems can be resolved rapidly and least cost approaches can be used

in program problem solutions.
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